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PREFACE

This book is based on a course presented at the Lewis Research Center.

The course was given to engineers and scientists who were interested in in-

creasing their knowledge of differential equations. Those results which can

actually be used to solve equations are therefore emphasized; and detailed

proofs of theorems are, for the most part, omitted. However, the conclusions

of the theorems are stated in a precise manner, and enough references are

given so that the interested reader can find the steps of the proofs.

In spite of the fact that differential equations is a branch of mathematics

which is to some extent a collection of loosely related ideas, we have attempted

to impart as much unity to the subject as possible and to point out the connec-

tion between the various topics. Although the material is not new, some parts

of the presentation are unconventional. Certain modern ideas, such as the

theory of matched asymptotic expansions, which have not worked their way

into most conventional texts, are also included. In the chapter on numerical

methods, we have attempted to include a discussion of the considerations

which should be taken into account when applying the methods to various

problems which arise frequently in practice. Techniques for solving first-order

partial differential equations are discussed in the chapter on systems of ordi-

nary differential equations since it is felt that these topics are easier to under-

stand when they are presented simultaneously.



CHAPTER1

Introduction

In this chapter we shall introduce some preliminary concepts and try to

gain a certain amount of insight into the behavior of differential equations and

their solutions. Such questions as what is meant by the solution of a differential

equation and what is the appropriate number of solutions will be considered

with some care.

Leibniz, in 1676, was probably the first to introduce the term "differential

equation." However, the study of differential equations had its beginnings

somewhat before this time in investigations of physical phenomena. Ever since,

developments in the field of differential equations have been closely related to

the physical sciences.

I.I SOLUTION OF EQUATIONS IN GENERAL

In this section we introduce some concepts which are needed for the

subsequent presentation. First, in order to obtain a geometric interpretation

of certain results, we shall have occasion to interpret a set of n variables, say

xl ..... x,, as coordinate axes in an n-dimensional space. A particular set

of values, say 4, • •., x °, of the n variables are then the coordinates of a

point in this space. When n= 2 and n = 3, these spaces are the very familiar

two- and three-dimensional Euclidean spaces. Hence, as will be seen, this

procedure allows us to use our geometric intuition about two- and three-

dimensional spaces to "picture" results about functions and equations involving

any number of variables.

We shall not need to use many of the mathematical properties of the

n-dimensional spaces; however, it will be important to have a careful defini-

tion of certain special regions in these spaces. Thus, let x °, .... x ° be the
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coordinates 1 of a fixed point in an n-dimensional space, and consider the

collection of all points whose coordinates satisfy the inequalities

Ix,-x°l < 8, . .., Ix,-x°l < 8

for some positive number 8. When n = 2, these points form the interior of a

square with center at (x °, 4) and sides of length 28. When n=3, the points

form the interior of a cube with center at (x °, x2°, x °) and sides of length 28.

The reason for using the word "interior" is that the boundary points which

satisfy the equalities

Ix,-xOl=8, . . ., Ixn-xOl=8

have been omitted from the collection.

Next we define a domain D to be any region of the n-dimensional space

which satisfies the following two conditions: (1) there exists a positive number

8 for each point x °, . .., x ° belonging to D such that every point xl,..., x_

lying in the range

Ix,-x°l < 8,..., Ix_-x°l < 8

is also a point of D; and (2) any two points in this region can be connected by a

continuous line. Thus, in a two-dimensional space the first condition requires

that we be able to draw around each point of D a square whose interior lies

entirely within D. This is illustrated in figure 1-1. The only points where this

is not possible are the points which lie on the boundary F of D. This is because

every square about a point of F must include at least some points which do not

belong to D. Thus, the first condition serves to exclude the boundary points

from D.

The second condition simply requires that the region not be composed of

two or more disconnected subregions, as shown for two dimensions in figure

1-2.

A neighborhood of the point x °, . ., x ° is simply a domain which contains

this point. Evidently, the collection of all points which satisfy the inequalities

in condition 1 form a neighborhood of the point x °, . .., x °.

1Instead of saying that x °..... x ° are the coordinates of the point, we shall frequently say that the _n

..... x ° is the point.
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FIGURE 1--1.--Interior and boundary points for a domain D.
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FIGURE 1--2.--Disconnected regions which fail to satisfy condition 2 for a domain.

A single-valued function in the x, y-plane can be roughly thought of as

one or more curves which associate a single value y with each value x. For

example, the function y--X2/2 shown in figure 1-3 associates the single number

x_/2 with each point Xo. On the other hand, a muhivalued function associates

more than one value of y with each value of x. For example, the function

tan -1 x, which is shown in figure 1-4, associates infinitely many values of y

with each value of x.

In order to avoid ambiguity we shall always suppose that every function

which is encountered is single valued unless explicitly stated otherwise.

Consider the equation

F(x,y)=O (1-1)



DIFFERENTIAL EQUATIONS

a.X

FIGURE 1--3.--Single-valued function y=x2/2.

FIGURE 1-4. --Function y= tan -1 x.
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where F has continuous first partial derivatives with respect to its arguments.

We say that the function y=f(x) is a solution of this equation if

F[x,f(x)]=O

for all values of x for which f(x) is defined. The solutions y=f(x) of equation

(1-1) are said to be determined implicitly by this equation and are called

implicit functions.

In fact, the implicit function theorem states that for every point (Xo, y0)

such that

F(xo, yo) = 0

and

OF
-- (x0, y0) # 0 (1-2)
Oy

there is a unique, continuous solution y=f(x) of equation (1-1) which is de-

fined on some neighborhood of the point x0, which satisfies the condition

yo=f(xo) and which has a continuous first derivative in this neighborhood.

Now ifF(x, y) is a reasonable function, equation (1-1) will be the equation

of a curve in the x, y-plane. For example, the implicit relation between x and y

F(x, y) =x-y_=0 (1-3)

is the equation of the cubical parabola shown in figure 1-5. It has an explicit

solution given by 2

y=f( x ) = (sgn x) Ixll/3 (1-4)

for all values ofx.

2 The function sgnx is defined by

x= _ +1 for x _>0
Sgli [ -1 for x< 0
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-1

1-

FIGURE 1--5. -- Cubical parabola x = y3.

Differentiating this equation with respect to x shows that

___yx=f,_ 1(x)
31xl2/3

Hence, condition (1-2) is satisfied at any point A on the curve in figure 1-2

which does not coincide with the origin. And, as required by the theorem,

equation (1-4) provides a unique solution with a continuous first derivative

in some neighborhood of this point. However, condition (1-2) does not hold

at the origin. But then the solution (1-4) has an infinite derivative (which is

certainly discontinuous) at this point.

More generally, consider the equation

F (xl, x2, . .., xn, y) = 0 (1-5)

A solution to this equation is a function

y=f(xl, x2, . .., xn)



with the property that

Fix,, x2, . .., Xn,f(x,,x2,
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• .,x,)]=0

for all values of x_, x2, • •., x, for which f is defined• In order to obtain a

geometric picture of equation (1-5) and its solution, it is convenient to think

of the variables x_, x2, • ., xn, y as the coordinates of a point in an (n+ 1)-

dimensional space.

Now suppose that the function F has first partial derivatives with respect

to its arguments in some domain D of this space. The implicit function theorem

now shows that for every point (x °, x °, . .., x_, y0) of D such that

0 0F ('_1, -'5172, •

0F .
Oy

there is a unique continuous solution

y=f(xl, x2, .

.,xO,y0)=0

.,xO,y°) #0

• ., 3gn)

of equation (1-5) which is defined in some neighborhood of the point x °,

x_, ., x °, satisfies the condition yO =f(x o, x o, . .., xO), and has continuous

first partial derivatives in this neighborhood.

1.2 DEFINITION OF DIFFERENTIAL EQUATION

A differential equation is an equation connecting the values of a function,

called the dependent variable, the derivatives of this function, and certain

known quantities. If the dependent variable is a function of a single variable

(independent) variables, the differential equation is called a partial differential

differential equation. If the dependent variable is a function of two or more

(independent) variables, the differential equation is called a partial differential

equation•

Thus, an ordinary differential equation is an equation of the form

F(x,Y,_x, . . .,-d_x_ jd_y]=O (1--6)
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where the positive integer n, the order of the highest derivative which appears

in equation (1-6), is called the order of the equation and F is a function of

the indicated n + 2 quantities.

If the function F in equation (1-6) is a polynomial of degree m in the

highest order derivative dny/dx _, we say that it is a differential equation of

degree m. Thus, the first-order differential equation of degree m has the form 3

m

F(x, y, y') - Mo(x, y) (y')m+ ._=lMk(X, y)(y')'-E=O

The differential equation (1-6) is said to be linear if the dependent vari-

able and all its derivatives appear only to the first degree. Thus, the general

linear equation can be written in the form

dny_ d n- ]y _xao(x) dx----g-t-ai(x)_+. . .+a,,-i(x) +an(x)y+b(x) =0 (1-7)

When the function b(x) in equation (1-7) is identically zero, the equation is

said to be homogeneous.

1.3 SOLUTIONS AND INTEGRALS OF DIFFERENTIAL EQUATIONS

A (particul_,r) solution 4 of the differential equation 5 (1-6) is any n-

times differentiable function f(x) defined on some interval a < x < b (which

may be infinite) such that equation (1-6) becomes an identity when y and its

derivatives are replaced byf(x) and its derivatives. Hence,

df( )F x,f(x), dx ' " "' dx" j=0

for all x in the interval a < x < b. Thus, the function y--sin x is a solution

of the differential equation y" + y-- 0.

aWe shall frequently write f' or f' (x) for df(x)/dx, f" or f" (x) for arzfldx z, .... and f_") or f(")(x) in place

of dnf/dx n for n = 1,2 ....
4The term "solution" was first used by Lagrange (1774).

5There are also solutions known as weak solutions which satisfy the differential eq. (1-6) only in a certain average

sense. We shall not pursue this topic further here. The interested reader is referred to ref. 1 for an elementary treat-

ment and to ref. 2 for a more advanced discussion.
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Now consider the equation

F(x, y, c1, c2, . .., cn) = 0 (1-8)

in which x and y are variables, and c1, c2, . .., cn are independent 6 arbitrary

constants. 7 We shall suppose that equation (1-8) possesses solutions for at

least certain values of the constants c_, c2, . .., cn.

Upon differentiating equation (1-8) with respect to x, n times in succes-

sion, we obtain

02F 02F ,. 02F" ,'2 OF ,,

Ox-----_+ 2 0--_-x-_y y . -_ _y ) + -_y y =0

0 nF + OF y(n) = 0
Ox-----_+ . . . +.. -_y

If the n constants can be eliminated between these n equations and equation

(1-8), we can, upon carrying out this elimination, obtain a differential equation s

G[x,y,y',y" ..... )An)] --0 (1-9)

It is clear, from the manner in which equation (1-9) was obtained, that

every solution of equation (1-8) satisfies a equation (1-9). The function F

is therefore sometimes referred to as a primitive of equation (1-9). In many

instances the solutions of equation (1-8) for y as a function of x can be ex-

pressed as formulas of the form

eThis means that eq. (1-8) is not expressible in terms of fewer than n constants. For example, y2-x2+_-c2

depends effectively only on the single constant c = c_ - c2.

7We assume that all functions are differentiable as many times as is necessary for the argument and that 8F/ay

is not identically zero.
s In practice it usually will not be possible to carry out all the algebraic operations which are necessary to obtain

an explicit formula for eq. (1-9).

9However, as we shall see in the following example, the converse of this statement is not necessarily true.
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y-_ f(x, Cl, C2, . . .,ca) (1-10)

which are parameterized by the n constants ct, c2, . .., cn. We therefore

anticipate that, for many nth-order differential equations, there exist formulas

of the form (1-10) each of which contains n independent constants ct, . ., Cn

and provides a solution to its corresponding equation for every set of values

of these n constants for which the formula makes sense, i° Such a formula,

if it exists, is said to be a general solution of the equation.

This terminology should not be interpreted to mean, however, that every

differential equation possesses a single general solution from which every

solution to the equation can be obtained by suitably choosing the values of

the constants. This is only true when certain restrictions are imposed on the

differential equation (1-6).

For example, consider the equation n

F(x,y,c) -_c2-n[x--C(n-1)]2+yn--l=O forn=l orn=2 (1-11)

where c is an arbitrary parameter which can take on any real value. By differ-

entiating this equation with respect to x we find that

Fx + y'Fy = 2c n-1 [x - c{n-1)] + ny_-ly ' = 0 (1-12)

First, consider the case where n= 1. Then upon eliminating c between

equations (1-11) and (1-12) we obtain the first-order linear equation

y'-_ 2(l--Y) =0 (1-13)
X--1

Now, for each value of c, equation (1-11) possesses a single solution

y= l -c(x--1) 2 for-_<x<_ (1-14)

This must, therefore, be a general solution to the differential equation (1-13).

_0It is usually necessary to restrict the range of the c's and ofx in order to avoid imaginary expressions and other

degeneracies.

_ When n= 1, the equation represents a family of parabolas with vertices at the point x= 1, y= 1; and whe_
n = 2, it represents a family of unit circles with centers on the x-axis.

10
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And it happens that every solution to equation (1-13) can be obtained from

equation (1-14) by a suitable choice of the constant c.

Next, consider the case where n--2. Then upon eliminating c between

equations (1-11) and (1-12), we obtain the differential equation

y2(y'2+ 1)- 1=0 (1-15)

For each value of c, equation (1-11) now possesses the two solutions 12

y= _/1-(x-c)2_ for Ix-cl 1
(1-16)

y=--V1- (x--c) 2 J

Hence, both of these formulas are general solutions to equation (1-15). Thus,

there is no single formula involving only a single parameter from which every

solution can be obtained, la This is not surprising since equation (1-15) can

be written as

1 {'dy2'_2+
\dx/ y -l=0 (1-17)

and since only y2 appears in this equation, it is clear that if y=f(x) is a solution,

so is y=-f(x).

Even though equations (1-16) are the only general solutions to equation

(1-15), it is still not possible to obtain every solution to the differential equa-

tion from these two formulas. Thus, equation (1-15) also possesses the two
solutions

y=+l

y_--I

which not only cannot be obtained from either of equations (1-16) but do not

even satisfy the primitive equation (1-11). They are called singular solutions

of equation (1-15) (see section 1.5) and are tangent to every solution obtained

from the general solutions.

12For any positive real variable x, V'x will always denote the positive square root ofx.

13Notice that we can combine the two eqs. (1-16) into a single formula y= (-1)" V1-(x-c) 2 for n=0, 1,

but this solution involves the two parameters n and c.

11

488-942 0 - 73 - 2
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We have shown how an nth-order differential equation can be obtained

by successively differentiating an equation of the type (1-8). In fact if, for a

given differential equation, we can find an implicit relation of the type (1-8)

such that every solution of the differential equation is also a solution of this

equation, we can for practical purposes consider the differential equation

solved. Thus, the process of finding a solution to a differential equation might

be thought of as reversing the process of obtaining a differential equation

from its primitive. The first step of this inverse process when applied to the

nth-order differential equation (1-6) (if it can be carried out) leads to a differ-

ential equation of order n-1 which involves a single arbitrary constant c.

And if this equation can be solved for c, it can be written in the form

H(x,y, y', .., ytn-l_) =c (1-18)

More generally, if for any given function H every solution of equation (1-6)

satisfies an equation of the form (1-18) for some value of c, this function

(and sometimes eq. (1-18) itself) is called a (first) integral of equation 14 (1-6).

Geometrically, this means that an integral H is constant along every solution

curve y=f(x) of the differential equation.

1.4 SOLUTIONS TO NORMAL EQUATIONS

If we try to find a solution to equation (1-15), say

y=f(x)

which satisfies the initial condition f(1)=0, we find from the first equation

(1-16) that

y=f(x) = _2

and from the second equation (1-16) that

y=f(x) =- Vl-x 2

_4Since integration is the inverse of differentiation, the preceding remarks show why the process of solving a

differential equation is sometimes referred to as integrating the equation.

12
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Therefore, equation (1-15) has two solutions which satisfy the condition

y=0 at x=l. However, we usually expect the solution of any first-order

differential equation arising from a physical problem to be uniquely determined

by a single initial condition. It is, therefore, necessary to find what conditions

must be imposed on a given differential equation if our expectations are to be

justified. To this end suppose that equation (1-6) can be solved for its highest

order derivative. It can then be written as an equation of the form

y_n_=G(x, y, y', . . .,3A n-t_) (1-19)

Any ordinary differential equation which has the form of equation (1-19) is

called a normal differential equation or is said to be in normal form.

We are interested in finding conditions which ensure that equations of

this type possess unique solutions satisfying the initial conditions

x= Xo, y= Yo, y' = Y_, • •., yO,-l_= y,,__ (1-20)

where Y0, • •., Yn-_ are constants. The fundamental theorem for nth-order

differential equations states that this is always the case, at least locally,

provided that certain restrictions are imposed on the function G. In order to

state this theorem in a precise way, let us for the moment treat the variables

x, y, y', . .., yen-t) as independent. Then if there exists a positive number 8

such that the functions

G, tgG c32G c_n-lG
ay' ay 2' " " "' ay "-1 (1-21)

are defined and continuous 15 for all values of the variables x, y, y', . ..,

yo_-_) which lie in the range

Ix--xol < 8, lY--yoJ < 8, Jy'-Y,I < 8, • •., lye'-')- r,-,I < a

the fundamental theorem states that equation (1-19) possesses a solution

y=f(x) which satisfies the initial conditions (1-20) and is defined on some

15Notice that only the partial derivatives of G with respect to the variables y, y', .... y_">need be continuous,

but the partial derivative with respect to x need not even exist.

13
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interval containing the point x = x0, say

a < x < b (1-22)

In addition, this solution is unique. This means that ifg(x) is any other solution

to equation (1-19) which satisfies the initial conditions (1-20), then

f(x) =g(x)

for all x in the interval le (1-22).

Notice that we have only asserted that the interval (1-22) exists; we have

not given any idea of its size. 17 That is, there is no relation given between a, b,

and 8. The interval might be exceedingly small. However, we shall give a

measure of the size of this interval for an important special case. Thus, if the

partial derivatives (1-21) are defined and continuous for all values of y, y',

• .., y¢,-1) and for all values of x in some interval which contains the point

x = Xo, say

c_ < x </3 (1-23)

and if there exists a single constant K such that

aG
7--_<K for i=0,1, 2, . . .,n-1
oy'"

for all y, . .., 3A"-1) and all x in the interval (1-23), the solution y=f(x)

which satisfies the initial conditions (1-20) exists and satisfies the differential

equation for all x on the interval (1-23)•

For example, it is easy to verify that the equation

y' =G(y) = l+y 2

has the solution y=tan (x+c). Since tan x becomes infinite at x=+_Tr/2, it

16 Actually, the same conclusions can be reached even when somewhat weaker conditions are imposed on the func-

tion G in eq. (1-19). Proofs of the fundamental theorem can be found in refs. 3 to 5.

"In fact, a measure of the size of this interval can be given in terms of certain bounds on the function G. See, for

example, ref. 4, theorem 8, p. 118.

14
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is clear that the solutions to this differential equation are defined only on inter-

vals whose lengths are at most 7r, even though G and OG/Oy are defined and

continuous everywhere. This occurs because there is no constant K which is

larger than oG/Oy= 2y for all values of y.

Although we normally expect the solution of an nth-order differential

equation to be uniquely determined by specifying n initial conditions (or the

equivalent), we have seen by example that specifying these conditions is not

necessarily sufficient to uniquely determine the solution to every nth-order

equation. The preceding discussion indicates that the extraneous solutions

must arise either because the differential equation (1--6) is not in normal

form (i.e., solved in a unique way for the highest order derivative) or because,

even if it is in the normal form (1-19), the function G is not sufficiently smooth

at some points.

A general solution to equation (1-19), if it exists, contains n "arbitrary"

constants. And since, in principle, it is usually possible to solve n equations

in n unknowns, this is consistent with the fundamental theorem which states

that n initial conditions determine the solution to equation (1-19).

For example, integrating the differential equation

y"=x 2 (1-24)

twice yields the general solution

x 4 (1-25)
y='i"_+ clx + c2

containing two arbitrary constants c_ and c2. The constants are uniquely

determined by the initial conditions

x = xo, y = Yo, y' = Y_

since the two equations

Yo=-_-4- C lXo-4- c2

15
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can be solved for c1 and c2 to obtain

C2 = Yo - xoY1 + x_
4

More generally, suppose that by some formal process of integration we

have found m general solutions

y-_-fi(x, cl, c2, • • .,Cn) i=1,2, . .,m (1-26)

of the differential equation (1-19) and that every solution of this differential

equation can be obtained from these formulas by properly choosing the con-

stants. Then for every set of values of the n constants x0, Yo, Y1, •., Yn-1

for which G satisfies the conditions imposed in the fundamental theorem,

there must be one and only one value of i for which it is possible to solve the

n equations

Yo=fi(xo, cl,c2, • • .,Cn)

Yl=-_f_x0, cl,c2, • • .,Cn)

n'l .

d fi cn)
Yrt-l--d_( xO, c1, c2, . ..,

for the n constants c_, C2, . . •, Cn.

For example, the function

y=f(x, c) = X/1 + ce x

satisfies the differential equation

(1-27)

16
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y'=F(y)=-_ y--
(1-28)

for all values of c for which the radical exists. And for this equation the partial

derivatives (1-21) are always continuous except when y= 0. Hence, the funda-
mental theorem shows that there must be a solution which satisfies the initial

condition

x=O y=--I

However, there is no possible choice of c in equation (1-27) for which f(0,

c) = - 1, which shows that it is not possible to obtain every solution to equa-

tion (1-28) from the formula (1-27). However, the function

y=-- X/I + ce x (1-29)

also satisfies equation (1-28) for all values of c for which the radical exists.

Equations (1-27) and (1-29) taken together will now provide a unique solution

for each initial condition which does not involve y = 0. But these formulas will

provide two solutions satisfying each initial condition involving y= 0, where

the partial derivatives (1-21) are not continuous. However, the fundamental

theorem provides no information about solutions which pass through points

where the partial derivatives (1-21) are not continuous.

Specifying initial conditions is only one of many ways of determining the

values of the arbitrary constants which appear in the general solutions of a

differential equation. The most common alternative is to require that the

solution and its derivatives satisfy certain conditions at both ends of some

interval, say Xl _< x _< x2, within which this solution is being sought. These

conditions are called boundary conditions.IS

For example, we might require that the solution to equation (1-24) satisfy

the boundary conditions

is The term "initial conditions" arose in conjunction with problems in mechanics which have time as the independ-

ent variable and have conditions imposed at some initial time. The term "boundary conditions" arose in conjunction

with problems involving physical distance as the independent variable with conditions imposed at the boundaries of a

physical region.

17
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y=Yl atx=xl

y = Y2 at x = x2

Then substituting equation (1-25) into these conditions shows that

X g

yl = _-_-_- ClXl+ C2

._4
__ 2

y2 --T_+ clx2 + c2

And since these equations have the unique solution

4__ 4

c1__ yl--y2_4_ x2 xx
Xl-X2 12(Xl-X2)

x2yl--xly2 xlx2(x_--x_)
c2-- +

x2-xl 12(x2--xl)

we conclude that the two boundary conditions uniquely determine the solution

of equation (1-24). There are a number of theorems which give conditions

which_ if satisfied, will ensure that the solution of an nth-order equation will

be uniquely determined by n boundary conditions. However, since these con-

ditions are fairly complicated, we will not state any of these theorems herein.

1.5 SOLUTIONS TO EQUATIONS NOT IN NORMAL FORM--SINGULAR SOLUTIONS

We have shown that the nth-order normal differential equation possesses

a solution which is uniquely determined by n initial conditions, provided that the

conditions imposed in the fundamental theorem are satisfied. In order to use

this result to obtain information about the solutions of a differential equation

which is not in normal form, it is necessary to solve this equation, at least in

principle, for its highest order derivative.

First, consider the general nth-order equation of the first degree

U(x, y, . .., y(n-1))y(n)+ V(x, y, . .., y(n-a)) = 0 (1-30)

This equation can be written in the normal form

18



y(n) = G(x, y, . . ., y(,,-1)) = _
V(x, y, . . ., y(a-,))

U(x,y, . .,y('-'))

INTRODUCTION

(1=31)

for all values of x, y, .., y(,-1) for which U is not equal to zero. We shall

suppose that U and F are defined and possess continuous first partial deriva-

tives for all values of x, y, . .., y(,,-1). Then the function G will possess con-

tinuous first partial derivatives for all values of x, y, . .., y(,,-1) at which

U # 0. Hence, the fundamental theorem shows that equation (1-30) will possess

a unique solution satisfying any set of n initial conditions x = x0, y = y0, • •.,

y("-l)=Y_-I for which U(xo, Y0, • •., Y_-I) # 0. Each solution of equation

(1-31) will satisfy equation (1-30); and if U is never equal to zero, every solu-

tion of equation (1-30) will satisfy equation (1-31). Hence, in this case, equa-

tions (1-30) and (1-31) are equivalent. However, suppose that the function U

vanishes for certain values of its arguments. If equation (1-30) possesses a

solution y=f(x) such that for certain values 19 of x

U(x,f(x),...,f(n-1)(x)) =0 (1-32)

then y=f(x) will not necessarily satisfy equation (1-31) for these values 2°

of x. It is called a singular solution of equation (1-30).

For example, the first-order equation

yy, _ (y2 _ y) = 0 (1-33)

can be written in the normal form

Y' yZ _ y=--=y--1 (1-34)
Y

The normal equation (1-34) has the general solution

y= 1 + ce x

_gThus y=f(x) satisfies both eq. (1-30) and the (n-1)st-order differential equation U(x, y ..... y(n-_)) =0.
20 Even if the numerator of G vanishes in such a way that it is possible to define G(x,f(x) ..... f(n-l)(x) ) at these

values of x.

19
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and this is also a general solution of equation (1-33). However, equation

(1-33) also has the solution

y=0 (1-35)

but equation (1-34) does not. Since the coefficient of y' vanishes at y=0,

equation (1-35) is a singular solution of equation (1-33).

Now consider the general equation (1-6) and let us temporarily treat

the quantities x, y, . .., yO0 as independent variables. Suppose that F has

continuous first partial derivatives with respect to its arguments. Then the

implicit function theorem (given in section 1.1) shows that equation (1-6)

has several (possibly infinitely many) solutions of the form

yOO= G(x, y, . .., yOn-a)) (1-36)

where the function G is continuous and has continuous first partial derivatives

for all values of its arguments for which it is defined. One of these solutions

will satisfy equation (1-6) for each set of values of x, y, . .., y(") for which

equation (1-6) holds and

aF

Oy_n) (x, y, . .,yO,)) #0 (1--37)

However, equation (1-36) is a normal differential equation; and therefore the

fundamental theorem shows that it possesses a unique solution satisfying

any set of initial conditions x = xo, y = Y0, • •., yO,-1)= y,,_l for which G(xo,

Y0, • •., Y,-_) is defined. All the solutions of the normal equations of the form

(1-36) obtained from equation (1-6) will satisfy equation (1-6). If OF/Oy °o

is never equal to zero for any values of x, y, . .., y(") for which equation

(1-6) holds, every solution of equation (1-6) will satisfy one of the equations

(1-36). Hence, in this case, equation (1-6) is equivalent to the set of normal

equations of the form (1-36). However, suppose that

OF y,
Oy_nJ (x,y, , . ., 3An))=0 (1-38)

for certain values of x, y, . .., ¢"). If equation (1-6) possesses a solution

2O



y=f(x) such that for certain values 21 ofx

aF

Oy_n) (x,f(x), . . .,f_a)(X))=0

INTRODUCTION

(1-39)

then for these values ofx the implicit function theorem no longer guarantees

that there will be normal equations (satisfying the conditions imposed in the

fundamental theorem) which are satisfied by the solution y=f(x) of equation

(1-6). This solution is, therefore, called a singular solution of equation (1-6).

For example, the equation

F(y, y') =y'Z+l-y=0 (1-4o)

has the two solutions

y'=G,(y) =XFy--1 (1--41)

y'=G2(y) =-N/y-1 (1-42)

where G1 and Gz have continuous derivatives for all values y, y' for which equa-

tion (1-40) holds and for which

OF
T--;= 2y ' # 0 (1-43)
oy

Now equation (1-41) has the solution

y= 1+ 1 (x-- c)2

and equation (1-42) has the solution

y=l+ l (x--c) 2

forx t> c (1-44)

forx _< c (1-45)

21Thus y=f(x) satisfies both the differential eq. (1-6) and the differential eq. (1-38).
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FIGURE 1-6.--Solutions of equations (1-41) and (1-42).

For each value of c, these two solutions are the two branches of the same parab-

ola. They are shown in figure 1-6. The solutions of equation (1-41) are shown

as solid curves. The solutions of equation (1-42) are shown dashed. Notice

that one solution to equation (1-41) and one solution to equation (1-42)

pass through each point (such as point A) lying above the line y= 1, which is
consistent with the fundamental theorem.

Equation (1-43) shows that the points where y'=0 are exceptional.

But, for those values of y and y' which satisfy equation (1-40), this can occur

only when y= 1. However, when y= 1, dGddy and dG2/dy become infinite;

and therefore the fundamental theorem does not apply along this line. Equa-

tions (1-41)and (1-42) (and, therefore, also eq. (1-40)) possess the solution

y=l

which lies along this line and which cannot be obtained for any choice of c

from either equation (1-44) or (1-45). Thus, y= 1 is a singular solution.

Notice that there are three solutions of equation (1-40) passing through each

point on the line y= 1.

Now consider the first-order differential equation

F(x, y, y') =O (1-46)

The singular solutions of this equation, if they exist, must also satisfy the

equation

22
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OF

Oy' (x'y'Y')=O (1-47)

When y' can be eliminated between equations (1-40) and (1-41), we obtain

the equation

g(x, y) =O (1-48)

Since the singular solutions simultaneously satisfy equations (1-46) and

(1-47), they must also satisfy equation (1-48). Thus, every singular solution of

equation (1-46) can be found by solving equation (1-48). However, the con-

verse is by no means always true. Since the symbol p is often used to denote

y', equation (1-48) is sometimes called the p-discriminant equation and the

curve described by this equation is sometimes called the singular locus.

When attempting to find all solutions of a first-order equation, the solutions to

the p-discriminant equation should be checked to see if they also satisfy the

differential equation.

For example, consider the first-order quadratic equation

F(x, y, y') =Ay'2+ By' +C=O

Where A, B, and C are functions of x and y. Upon eliminating y' between this

equation and the equation

OF
D

Oy' 2Ay' + B = 0

we find that the p-discriminant equation is

B 2 -4AC=0

Thus, for the first-order equation

F(x, y, y') = xy'2-3yy ' +9x2 = 0 (1-49)

the p-discriminant equation is

y_ = 4x a
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which has the two solutions y=+--2x 3/2. Direct substitution shows that both

these solutions satisfy equation (1-49); and, therefore, they are both singular

solutions.

1.6 LINEAR EQUATIONS

In this section we present a number of important special properties which

are possessed by the solutions of linear equations. The general form of the

nth-order linear equation is given in equation (1-7). If fl(x) and f2(x) are

any two solutions to a linear homogeneous differential equation and Cl and

c2 are any constants, the function

y=c_(x) +c_f2(x) (1-50)

is also a solution. This linear superposition principle is extremely important

in analysis. It can easily be extended to include linear combinations of any

number of solutions. Notice that the homogeneous equation always possesses

the trivial solution y-- 0.

The equation obtained from a particular linear equation of the form (1-7)

by setting b(x) equal to zero is called the associated homogeneous equation

of this equation. Any solution to the associated homogeneous equation is

called a homogeneous solution of the equation. If f(x) is any solution of equation

(1-7) and if fH(x) is any homogeneous solution of this equation, the function

f(x)+cfH(x)

is also a solution. Of course, the superposition principle holds only for the

homogeneous solutions of a linear equation.

Notice that the linear equation (1-7) can always be written in the normal

form (1-19) with

G=_ a_.2_ 1)
ao y(n- __

art-1 y, _ an
ao ao y- b (1-51)

for all values of x where the coefficient ao(x) is not equal to zero. It follows

that for these values of x

OG a,,_j (x)

OyO)=" ao(x) forj=O, 1, 2, . .,n-1 (1-52)
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Now suppose that the coefficients ao, al, . .., an, b of equation (1-7) are

all continuous in some finite 22 interval

a _< x _</3 (1-53)

Then if ao(x) does not vanish at any point of this interval, it will always be
possible to find a constant K such that

an-j(x)
ao(x)-- _<K forj= l, 2, 3, . . .,n-1

and for all x in the interval (1-53). It can also be seen from equations (1-51)

and (1-52) that the partial derivatives (1-21) are continuous for all values of

y, y', . .., 3A_-1) and all values of x in this interval. Hence, in this case, G

not only satisfies the conditions imposed in the fundamental theorem, but it

satisfies the more restrictive conditions given immediately following it.

We therefore conclude that for linear equations the fundamental theorem

can be stated in the following way:

Let the coefficients a0(x), al(x), . .., an(X), b(x) of equation (1-7) be con-

tinuous on some interval _ < x </3 which contains the point x0, and suppose

that the function ao(x) does not vanish in this interval. Then for any real numbers

Y0, • •., Yn there is a unique solution y = f(x) of equation (1-7) satisfying the
initial conditions

y(xo)= I1o, y' (xo)= Y,, . . ., y(_-t)(xo)= Yn_l

And this solution satisfies the differential equation on the entire interval

ot < x </3.

If the linear equation (1-7) has coefficients which are continuous in some

interval, the points in that interval where the coefficient ao(x) vanishes are

called singular points of the equation. We shall have more to say about such

points subsequently.

A set of functions gl(x), gz(x), . .., g_(x) is said to be linearly inde-

pendent in an interval if it is impossible to find constants c_, . .., c_ which

are not all zeros such that the expression

22This means that neither et nor/3 is equal to infinity.
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c,g,(x) +c g2(x) + . . .

is equal to zero at all points (i.e., identically) of the interval. A set of functions

which is not linearly independent is said to be linearly dependent.

If the set of functions gl(x), • •., g_(x) is linearly independent, no one

of these functions can be expressed as a linear combination of the others•

Hence, if ai # 0, it will not be possible to express the function

f (x) = a,g, (x) + a2g2 (x) + . . . + a_gn(x) (1-54)

in the form

f(x) =elgl(x) +e2g2(x) + . . . +ei-lgi-_(x) +ei+lgi+l(X) + . . +e_g,,(x)

:in which the function gi(x) no longer appears. Thus the constants appearing

in equation (1-54) are independent. 2a

For example, the functions gl(x)=2x-5 and g2(x)=6x--15 are not

linearly independent since

clgl (x) + c g2(x) = o

when c_ = 3 and c2 =- 1. However, the functions

g_ (x) = 2x- 5 and g2 (x) = 2x + 5

are linearly independent.

Let gl, g2, • ., g_ be a set of (n-1)-times continuously differentiable

functions. The determinant

W(gl, gz, . • .,gn) --

gl g2 ... gn

g_ g_ .... gn

s n-l> ...

_sThis means that eq. (1-54) is not expressible in terms of fewer than n constants.
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is called the Wronskian of these functions. Now suppose that the functions

gl, g2, • •., gn are linearly dependent on some interval. Then there exist

constants cl, c2, . .., c,, not all zero such that

clg (x)+c2g2(x)+ . .

at every point of the interval. Hence, we can differentiate this expression

n- 1 times to obtain

Clg_(x) + c2g_(x) +...+ Cng'_(X) =0

Cldln-1)(N) "3t- C2d2n-1)(X) -_-... + Cn_°(nn-1)(N) =0

This gives us a set of n linear equations for the n nonzero constants

cl, c2, . .., c,,. If these equations are to be solvable for the constants at all

points of the interval, the Wronskian must vanish at all points of this interval.

Hence, we can conclude that if the set g_, g2,. •., gn of (n- 1)-times continu-

ously differentiable functions is linearly dependent on the interval a <<-x <_ fl,

•the Wronskian of these functions must vanish at all points of this interval.

Another way of saying this is that if the Wronskian of a set gl, g2, • •., g_

of (n - 1)-times continuously differentiable functions does not vanish at every

point of the interval a <_ x <_ _, these functions are linearly independent on this
interval.

Thus, the Wronskian of the functions (discussed in the previous example)

g,(x) =2x--5 and g2(x) =6x- 15 is

12x26x61 I
=(2x--5)6--2(6x--15) = 0

'And this shows that these functions are linearly dependent. However, the

Wronskian of the linearly independent functions gl(x) = 2x -- 5 and g2(x) =

2x+ 5 is

27
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g2)=
2x - 5 2x + 5

2 2

=--20

which is certainly not equal to zero.

Now consider the associated homogeneous equation of equation (1-7)

aoy _n)+ a_y _n-_) + . . . + an-ly' -+-any = 0 (1-55)

and suppose that the coefficients a0, a_, . .., an are continuous in the interval

o_ _< x _</3 (1-56)

and that ao(x) does not vanish on this interval. We shall now show that any n

solutions ft(x), . .., fn(X) of equation (1-55) are linearly dependent on the

interval (1-56) if, and only if, their Wronskian W(ft, f2, • •., fn) vanishes at

every point of this interval.

Another way of saying this is that the n solutions fl(x), . .., fn(X) of

equation (1-55) are linearly independent on the interval (1-56) if, and only

if, the Wronskian W(fl, • •., fn) is not equal to zero at some point of this

interval.

We have already shown that any set of (n-1)-times continuously differ-

entiable functions is linearly dependent on an interval only if their Wronskian

vanishes at every point of this interval. Hence, it is certainly true for a set of

n solutions. 24 In order to show that, conversely, the vanishing of the Wronskian

implies that the solutions are linearly dependent, suppose that W_,.A, • •.,

f,) vanishes at every point of the interval (1-56) and let x0 be any point of this

interval. Then the Wronskian certainly vanishes at this point, and therefore

the system of n equations

24Recall that the definition of a solution requires that it be n - 1 times continuously differentiable.
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cg,(xo) + c_(xo) +. . + cJ.(xo)=O

c_, (,co) + c_(xo) + . . + c_,(,co) =0

c,f(ln-1)(Xo) Jr- c2f_ "-') (Xo)+ • • • +c,,f(,7-')(Xo)=O

(1-57)

has a solution _1= c l, C2 _- C2, • ., _,= c, such that the constants c_, c2, . ..,

& are not all zeros. Hence, we can define a function f(x) by

f(x)=eg,(x) +e_(x) + . . . +eJ.(x) (1-58)

Then it follows_from the linear superposition principle that f(x) is a solution to

equation (1-55) in the interval (1-56). And differentiating e_quation (1-58)

n- 1 times shows that

f=_oq + eaf2 -+ . . + e'_,,

f'=e'tf_' + eaf2' + .... + _,tf"

f(.-i) = {_If({'-- 1) __ _2f_n -- I) + • • • + _nf(n,, -- 1)

Hence, upon setting x = Xo in this system and using equation (1-57), we find

that the solutionfsatisfies the n initial conditions

f(xo) =f' (xo) = . . . =f(n-i)(xo)=0

Since the trivial solution of the homogeneous equation (1-55) also satisfies

these conditions and the fundamental theorem shows that there is only one

such solution, we therefore conclude that f(x) is equal to zero at every point

of the interval ( 1-56 ). Therefore,

eoq(=)+e_(x)+... +eJ,(x) =0
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at every point of the interval (1-56). But since the constants _1, _z, • •.,

_n are not all zero, this implies that the setfl,f2, . . .,fn is linearly dependent

and therefore proves the assertion.
We shall now show that the linear homogeneous equation (1-55) always

has n linearly independent solutions on the interval (1-56). To this end notice

that for any point xo of this interval the fundamental theorem shows that equa-

tion (1-55) has n solutions fl(x), J_(x), . .., fn(x) which satisfy the initial

conditions

A (xo)= 1

A' (xo)=f(' (xo)= . . . =A_n-'(xo) =0

and for r= 2, 3, . .., n

fr(xo) =f_' (xo)= . . . =gr-_)(x0)=0

f_7 -1) (xo) = 1

flrr)(x0) =flrr+,)(X0)= . . .=f_n-1)(X0)=0

It is easy to see from these conditions that the Wronskian of these n solutions

has the value unity at the point Xo. Thus, it is not zero at every point of the

interval a _< x _</3, and we can therefore conclude that these n solutions are

linearly independent.

For example, the second-order differential equation

d2y+
dx 2 y=0

has the two solutions y= sin x and y-- cos x.

The Wronskian of these solutions is

W(sin x, cos x) =

sin x cos x

cos x sin x

=- sin 2 x- cos 2 x =- 1 # 0
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Hence, the solutions are linearly independent.

If fl, f2, • •., fn are any n linearly independent solutions of equation

(1-55) on the interval (1-56), and if h(x) is any other solution of equation

(1-55) on this interval, there exist constants cl, c2, • •., -Onsuch that

h(x)=_orl(x)+_f2(x)+ . .+_Jn(x) (1-59)

on the entire interval.

This means that every solution to the equation on this interval can be

obtained from the general solution

f(x, cl, c2, . . .,cn)=clfl(x) +c_f_(x)+ . . +cJ,(x)

In order to prove this assertion, notice that since fl, • •., fn are linearly

independent, IV(_, j_, ..., f_) cannot be zero at every point of the interval

(1-56). Hence, there exists a point, say x0, for which the Wronskian is not zero.

The n equations

h(xo) =_:,(x0) +

h'(xo)=e_(xo) +

I

_f_(x0)+. . +_Jn(xo)

!_(xo)+. . +_(xo)

• + _A_-,_ (xo))
I

h¢,-1)(xo) = __n-1)(xo) + _zA_- 1_(xo)+ .

(1-60)

can therefore be solved for the n constants _1, _2, • •., _,,. Hence, the linear

superposition principle shows that the function g(x) defined by

g(x)=_f,(x)+_zfz(x)+... + _ J,,(x) (1-61)

is a solution to equation (1-55) on the interval (1-56). And it follows from

equation (1-60) that

h(xo) =g(xo), h' (xo) =g' (Xo), . .., h_-l_(Xo) =g_n-'_(x0)

But since the fundamental theorem shows that there is only one solution
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satisfying a set of n initial conditions, we can conclude that g(x)=h(x) for

all x on the interval (1-56). Equation (1-61) now shows that equation (1-59)

holds, and this proves the assertion.

It is easy to see from these results that equation (1-56) cannot possess

n-4- 1 linearly independent solutions on the interval (1-56).

Now consider the general linear equation (1-7) and suppose that the

coefficients a0(x), al(x), . .., a,(x), b(x) are continuous on the interval

a <_ x _</3 (1-62)

and that ao(x) does not vanish at any point of this interval. Let fo(x) be any

particular solution of equation (1-7); and let fl, f2, • •., f_ be any n linearly

independent solutions of the associated homogeneous equation. Then if h(x)

satisfies equation (1-7) on this interval we can find n constants cl, . .., Cn
such that

h(x)=_(x)+. . +_,f_(x)+f0(x) (1-63)

on the entire interval.

This means that every solution on the interval can be obtained from the

general solution

f(x, cl, c_, . .., c,)=c_f,(x)+c_(x)+ . . . +c,f_(x)+_(x) (1-64)

In order to prove this assertion, notice that h(x) -fo(x) is a solution to the as-

sociated homogeneous equation of equation (1-7). Hence, we can find constants

cl, c2, . .,_,suchthat

h(x)-fo(x)=_oC_(x)+_f_(x)+. . +_,f_(x)

This shows that equation (1--64) holds and proves the assertion.

The general solution of the associated homogeneous equation

coC,(x)+c_2(x) + . . . +c,f,(x)

which appears in the general solution (1--64) of the nonhomogeneous equation

(1-7) is called the complementary function. And any set of n linearly inde-
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pendent homogeneous solutions is known as a set of fundamental solutions

to the homogeneous equation.

For example, the complementary function of the second-order equation

d2y + y= x (1-65)
dx 2

is cl cos x+c2 sin x where cl and c2 are arbitrary constants. A particular

solution to this equation is y= x. Then

y=cl cos x+c2 sin x+x

is a general solution of equation (1-65), and any other particular solution of

this equation can be obtained by assigning particular numerical values to the
constants cl and c2.
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CHAPTER2

First-OrderEquations

In this chapter a number of elementary techniques for obtaining explicit

solutions for certain types of first-order equations are developed. These

equations are chosen for consideration because they are simple enough to

be solved explicitly and, at the same time, occur frequently enough in practice

so that they are worth solving. As it happens, these equations are all of the

first degree.

2.1 SYMMETRIC NOTATION FOR EQUATIONS OF FIRST DEGREE

The first-order differential equation of the first degree is an equation of the

form

y'N(x, y) +M(x, y) =0 (2-1)

We shall suppose that M and N possess continuous first partial derivatives in

some domain D of the x, y plane. If N(x, y) were nonzero at every point of

D, we could write equation (2-1) in the normal form

M (x, y) (2-2)
y' =f(x, y) - N (x, y)

and the fundamental theorem would guarantee that this equation have a

unique solution passing through each point of D. Points of D where N(x, y) = 0

are called singular points of the equation.

In equation (2-1), y is considered as the dependent variable. The solutions

of this equation are functions of the form
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y=f(x) (2-3)

On the other hand, the equation

_yM(X, y) + N(x, y) =0 (2-4)

which is closely related to equation (2-1) possesses solutions which are func-

tions of the form

x= g(y) (2-5)

The singular points of this equation occur when M(x, y) = O.

However, in any domain in which neither equation (2-1) nor (2-4) has a

singular point, any solution (2-3) of equation (2-1) can be solved for x to obtain

a solution of the form (2-5) of equation (2-4), and conversely. Thus, for many

purposes, it is not necessary to distinguish between equations (2-1) and (2-2).

When this is the case, we can introduce the symmetrical notation

M(x, y)dx + N(x, y)dy=O (2-6)

If M(x, y) and N(x, y) are both not zero, we understand this notation to

denote either equation (2-1) or equation (2-4). When M(x, y)=0 but N(x, y)

# 0, the existence of the solution (2-3) of equation (2-1) is guaranteed by the

fundamental theorem, but that of equation (2-4) is not. 25 Hence, in the neigh-

borhood of a point where M(x,y)=0 we understand the notation (2-6) to

denote equation (2-1). Similarly, when N(x, y)= 0 but M(x, y) # O, we under-

stand the notation (2-6) to denote equation (2-4). The fundamental theorem

does not guarantee that either equation will possess solutions at points

where M(x,y) and N(x,y) are both zero, and we therefore say that such

points are singular points of equation (2-6).

2SAt such points, dx/dy= 0¢ and dy/dx=O; hence, dx/dy is not continuous.
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2.2 EXACT EQUATIONS

The first-order differential equation of the first degree

M(x, y)dx + N(x, y)dy=O

FIRST-ORDER EQUATIONS

(2-7)

with M and N defined and continuous in some domain D, is said to be exact

in D if the line integral

_ [M(x, y)dx+N(x, y)dy]

has the same value for all paths of integration which lie in D and which have the

same end points. This is equivalent to requiring that the integral vanish around

every closed path within D.

It is shown in books on calculus that the differential equation (2-7) is

exact if, and only if, there exists a continuously differentiable function qb(x, y)

such that 26

M =ack and N =ack (2-8)
Ox Oy

Then the function _b, which is defined only to within an additive constant,

is given by

(x,u)6 (x, y) = (3/' ,x + Ndy) + constant (2-9)
J(Xo,yo)

where (x0, yo) is any fixed point and the integral is carried out over any curve

F within D which joins the fixed point (x0, yo) with the variable point (x, y).

Suppose that equation (2-7) is exact. Then it follows from equation (2-8)

that the total derivative of _b with respect to x along any direction is

d6_a6dx Ox + y'=M+y'N (2-10)

Similarly, the total derivative with respect to y is

26Alternatively, we can say that M dx + N dy is an exact differential of the function _b or that dek = M dx + N dy.
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d6_o6 a6 dx dx
dy Oy 4- Ox dy-N+ dyM-

(2-11)

Since the differential equation (2-7) denotes either the equation

M + y'N = 0

or the equation

N+d_M=0

equations (2-10) and (2-11) show that _b is constant along every solution

curve of equation (2-7). Hence, _b is an integral of equation (2-7). However,

for a first-order equation, finding its integral is equivalent to finding its solu-

tion in implicit form. Thus, an exact equation can effectively be solved simply

by carrying out the integral (2-9) along any convenient path.

It is easy to see by differentiating equations (2-8) and interchanging the

order of differentiation that, if M and N are continuously differentiable, a

necessary condition for equation (2-7) to be exact is that

oM=O___N (2-12)
Oy Ox

Now suppose that the domain D has no holes. That is, it is similar to the

domain shown in figure 2-1(a) but not the one shown in figure 2-1(b). Such a

domain is said to be simply connected.

Let F be any closed curve within D and let R be the region enclosed by

F, as shown schematically in figure 2-2. Then Green's theorem

.[ M dx + N dy] = _x dx dy

shows that condition (2-12) is also a sufficient condition for exactness. If D

were not simply connected, condition (2-12) would not be sufficient to ensure

that the line integral will always vanish along a closed path such as F in figure

2-2.
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(a) (b)

(a) Domain has no holes. (b) Domain has a single hole.

FIGURE 2--1.- Singly and multiply connected domains.

FIGURE 2-2.- Path of integration within D.

We shall always suppose that the conditions of differentiability and con-

nectedness given in the preceding paragraphs are satisfied and therefore that

equation (2-12) is the necessary and sufficient condition for equation (2-7)

to be exact.

For example, consider the equation

2x-y dx 2y+x
x _ + y2 + x-7-_ dy= 0
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Y

(xO,y) • •(x,y)

(xO, YO)

FIGURE 2--3.- Path of integration for finding integral.

Then

and

cgM_ cg[2x-y_ y2-xZ-4xy
ay-_y\-_+-_]- (x2+y2) 2

ON _ 0 [2y+x __y2--x2-4xy
ax-Ox\-xi-_-_)- (x2+yZ)Z

Hence, equation (2-12) holds and the differential equation is exact. Therefore,

carrying out the integral (2-9) along the path depicted in figure 2-3 shows that

fyY 2y+xo fZo_ 2x-y6(x,y)= o x_+y2dy+ x 2+y2dx

= ln(x 2 + y2) _ tan-1 x+ constant
Y

is an integral of the equation.

Unfortunately, the majority of first-degree equations encountered in

practice are not exact. It is therefore natural to ask whether there exists a

function X(x, y) such that the equation

h(M dx+ N dy) =0 (2-13)
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(obtained by multiplying both sides of eq. (2-7) by ;,) is exact. It can be shown

(ref. 3, p. 27) that such a function always exists, provided only that equation

(2-7) possesses exactly one general solution. It is called an integrating factor.

Integrating factors are certainly not unique for, if _, is an integrating factor of

a given first-order equation, so is c;, for any constant c.

Now if X is an integrating factor for equation (2-7), the condition (2-12)

for exactness must hold for equation (2-13). Hence,

0 =a (;,N)
0y 0x

or

Thus, X is the solution of a linear partial differential equation (see section 3.3)

which is usually more difficult to solve than the original ordinary differential

equation. However, since it can be shown that every solution of equation

(2-14) is an integrating factor of equation (2-7), it is only necessary to find a

single particular solution to equation (2-14).

Although, in general, finding an integrating factor is quite difficult, it is

sometimes possible to accomplish this simply by inspection. For example,

upon multiplying the equation

[.f(x) + y]dx -- x dy= 0

by 1/x 2 we obtain the equation

1 +y]dx ldy=OIf(x)

And since O/Oy[(f+y)/x2]=l/x 2 and O/Ox(-1/x)=l/x 2, this equation is

exact. Then carrying out the line integral (2-9) shows that the differential

equation possesses the integral

f f x)x2
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2.3 EQUATIONS OF THE TYPE g(y)y'=f(x)+h(x)G(lf(x)dx'Jg(y)dy )

Many of the differential equations which can be solved by classical

methods are special cases of the differential equation

-g(y)dy+[f(x)+h(x)G( f f¢x)dx"f g(y)dy)]dx=0 (2-15)

where g(y), f(x), h (x), and G can be any functions of their arguments. In order

to obtain a solution to this equation put

f f g y, y
Then dU= f(x)dx-g(y)dy and equation (2-15) can be written as

dU + h (x)G (U)dx = 0

It is easy to see that 1/G(U) is an integrating factor for this differential equation

and therefore that the equation

dU

G(u)_+h(x)dx=O

is exact. Hence, it follows from equation (2-9) that

_'s,'_,)_,-s,(,,_, 1 f¢b - j "G(U) dU + h(x)dx=constant
(2-16)

is an integral of equation (2-15).
We now show that many of the first-order normal equations, which are

solvable by the classical methods, can be obtained by specializing the functions

f, g, h, and G in equation (2-15) and, therefore, that the solutions of these

equations (actually the integrals) are all given by equation (2-16).
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First put G(U)=I, and h(x)=0. Then equation (2-15) becomes the

general separable equation

-g(y)dy+ f(x)dx=O

and equation (2-16) shows that its integral is simply

6= f f (x)dx- f g(y)dy

Now put G(U) =-- (a/fl)eU/"H(e -U)-l,

Then equation (2-15) becomes

dy=xq3/')-_H(-_)dx

g(y) = ody, f(x) =h(x) = fl/x.

(2 -17)

which is the isobaric (or one-dimensional) equation. In this case, the integral

(2-16) becomes

dU

a_ eV/_H(e_V) _ 1

-- In x, = constant

or

) dV

a_q_V__(I/,_)H ( V) _ V
[3

-- In x_ = constant

If we put a = fl= 1 in equation (2-17), we obtain the homogeneous equation

dy=H (Y) dx (2-18)

And equation (2-16) shows that its solution is

In x = constant
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DIFFERENTIAL EQUATIONS

In order to recognize whether a given differential equation has the form

(2-17), it is necessary to be able to determine whether any given function

7/(x, y) can be expressed in the form

x¢_/_)-lH (_) (2-19)

A necessary and sufficient condition that 7/(x, y) can be expressed in this form

is that there exist a number p such that

n(tx, tpy) = tp-l_(x, y) (2-20)

for all values of t.

In order to show that a function which satisfies the condition (2-20) can

always be expressed in the form (2-19), put t= 1/x in equation (2-20) to get

_(_y)=xa_x,y_
Now choose a number ot and define the number fl and the function H(U) by

fl- po_ and H(U) -0(1, U_/_), respectively. Then

r y_\,/_l(1,x--_/_)=*/(1,Y):x_-(a/_)_l(x,y)H(x_)="L_'(_)J='
which shows that _ (x, y) can be expressed in the form (2-19).

For example, replace y by yt _la and x by xt in the function

to show that

y(x- y_a In y + y_ In x)
"O(x, y) = x 2 (a In y-- In x)

"0(xt, y t'/a: ) = t__-_)/aTI (x, y )

Hence, this function satisfies condition (2-20), and it can be put in the form

(2-19) by introducing the variable y_/x to obtain
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1 --Y_ln

(x, y) = a41/a)-1 x
In y_

In the important special case where a =/3 (corresponding to the homogeneous

eq. (2-18)), condition (2-20) reduces to

_q(tx, ty)=_q(x,ry) (2-21)

A function of two variables which satisfies condition (2-21) is said to be homo-

geneous of degree zero, which, of course, accounts for the name given to

equation (2-18). More generally, a function of the n variables xl, x2,..., xn,

say lq(xl, x2, . .., x,), is said to be homogeneous of degree k in the variables

x_, x2,..., x, if it satisfies the condition

_q(tx,, tx2, . .., tx,) = tkTI (X,, X2, • •., X,,)

for all values of t.

Another well-known special case of (2-15) is obtained by putting

G(U) =e -(k-i)v, h(x) = qJ(x)exp [(k-1)f f (x)dx], and g(y)

to obtain Bernoulli's equation

dy= [f (x)y-4- qJ(x)yk]dx '

It follows from equation (2-16) that its solution is

exp [(k-(k_l)l)y k-'ff(x)dx]+ f qJ(x)exp [(k-1)ff(x)ax] dx

(2-22)

= 1/y

(2-23)

= constant

(2 -24)

When k = 0, equation (2-23) reduces to the first-order linear equation

dy= [f (x)y + qJ(x) ]dx (2-25)
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And equation (2-24) shows that its solution is

y = e ff(x)dx Ie-SZlx)_x qJ(x)dx + constant e
J

ff(x)dx

2.4 RICCATI EQUATION

The Riccati equation

-_xY=f(x) -t- g(x)y -I- h(x)y 2 (2-26)

can be thought of as a generalization of the linear first-order equation (2-25).

This equation is sometimes called the generalized Riccati equation since

Riccati actually studied the special case

dy-4- by 2 = cx m
dx

where b and c are constants.

If a particular solution yl of equation (2-26) is known, the general solu-

tion y of this equation is

1
y=yl+_

where U is the general solution of the linear equation

dU+
dx (g + 2y_h )U + h = 0

which was solved in section 2.3. This follows from the relation

dy f _ gy_ h_ = dy_ _ f _ 1 [dU + U)dx dx " gy' - hy2 - -'_ \dx gU + h + 2y,h

1rd,-,+ ]- u _Ldx (g +2ylh)U+h

=0
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Even if a particular solution is not known, it is still possible to reduce

the problem of solving equation (2-26) to the problem of solving a linear equa-

tion; but in this case the equation is of second order. In order to accomplish

this put

U _ e-fyh(x)dx

Then U'/U =- yh and

U"=-yhU'-y'hU-yh'U= (y2h2-y'h)U-yh'U

=- (f + gy)hU-yh'U

=-- fhU - y(gh + h"_U

=-fhU+(g+ h'_ U'
\ h�

Hence, U satisfies the second-order linear homogeneous differential equation

g h') U'+fhU=0U"- +X

The converse of this statement is also true. That is, every second-order linear

homogeneous equation can be transformed into a Riccati equation.

Since linear second-order equations will be discussed extensively in

chapter 6, we shall not consider the Riccati equation further here.
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CHAPTER3

SystemsofEquations

In this chapter, a number of important properties of systems of differential

equations are discussed. We shall also show how the solutions of these systems
can be used to obtain solutions to certain types of first-order partial differential

equations.

3.1. FIRST-ORDER NORMAL SYSTEMS

In certain applications it is necessary to deal with systems of simultaneous

differential equations. The set of n first-order normal differential equations in

the n dependent variables yl, y2, • •., y,

dy___l= GI (x, y_, y2, • • y,)
d,_ "'

dY2=G2(x, y_, y2, . . ., y,)
dx

-_x=Ga(x, y,, y2,..., Y,_)

(3-1)

is called a normal system. It provides a standard form to which all normal

differential equations and all systems of normal differential equations can be

reduced. For example, by introducing the new dependent variables yi defined
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by

fori=l,2,...n--1

the nth-order normal equation (1-19) can be transformed into a first-order

normal system

dyi _
-'_X-- Y2

dy2

--_X-- Y3

_x_=G(x, yi, Y2, • •., yn)

However, it is by no means always possible to transform a first-order normal

system into a single nth-order equation.

In order to obtain a geometric interpretation of the system (3-1) and its

solutions, it is again convenient to think of the variables x, y_, y2, • •., y,_ as

being the coordinates of an (n+ 1)-dimensional space. The definitions of a

domain and of a neighborhood in this space were given in section 1.1. Based on

these ideas, the fundamental theorem for the first-order normal system can be

stated as follows:

Suppose that the functions Gifor i = 1,2, . .., n are defined and continuous

in some domain D and that the partial derivatives

for 1 _< i_<n; l<<_j<_n

are continuous in D. Then for each point (xo, y0, yO, . .., y_) of D equation

(3-1) has precisely one solution
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y,=f,(x)
y2= f2(x)

Yn=fn(x)

SYSTEMS OF EQUATIONS

(3 -2)

which is defined on some interval c_ < x < fl containing the point x0 and satisfies
the initial conditions

fl(xO)=y °, f2(xo)=y °, . .., fn(xo)=y ° (3 -3)

The solutions of the system (3-1) can be visualized as curves in the

(n + 1)-dimensional space. Then the fundamental theorem states that there is

precisely one such curve passing through each point of the domain D in this

space.

If H(x, yl, y2, • •., Yn) is a nonconstant function such that every solution

to the system (3-1) satisfies an equation of the form 27

H(x, y,, y2, • •., y,) =constant (3-4)

(the constant may be different for different solutions), then H(x, y,, y2 • •., y,)

is called an integral (or first integral) of the system (3-1). Thus, an integral of

the system (3-1) is a function H which is not identically constant but is constant

along each solution curve of the system. Therefore, upon differentiating H

along any solution curve of the system (3-1) we obtain

dH OH OH dy 1 OH dyn

dx - Ox + Oyl dx +''" + Oy. dx

OH+ aH +OH G,,=O
= O-'-x _GI+... Oy,

2¢ Notice that this definition of an integral is consistent with the one given in chapter 1 for the nth-order normal

equation when the latter equation is transformed, by the procedure just described, into a first-order normal system.
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provided that H possesses continuous first partial derivatives. But each point

of D lies on a solution curve of the system (3-1). Hence, H satisfies the equation

OH + OH GI + OH OH
Ox Oyl _ G2+ . . . + _ G,=O

(3-5)

at every point of D. Conversely, if H is any solution to equation (3-5) in D, it

is certainly constant along every solution curve of the system (3-1). Hence, H

must be an integral of this system. We have now shown that a nonconstant

function H with continuous partial derivatives is an integral of the system

(3-1) in D if, and only if, it satisfies the first-order linear partial differential '

equation (3-5).

Each integral H of the system (3-1) determines a family of n-dimensional

hypersurfaces in the region D, and every solution curve lies on one of these
hypersurfaces. Now suppose that we have found n integrals, say HI, H2,

• .., H,`, of the system (3-1) which are defined in the region D. If the Jacobian

determinant

O(H1, . .., H,`) _

O(y,, . . ., yn)
(3-6)

of these integrals is different from zero in D, it will be possible 2s to solve the n

equations

Hi(x, yt, . • ,, yn) _--Cl, • • .,H,`(x, yl, . . ., y,,) =c,` (3-7)

for yl, • •., Y,, as functions of x. And these functions will depend on the n

arbitrary constants cl, . .., c,`. The n equations (3-7) therefore implicitly

determine an n-parameter family of curves in the (n 4- 1)-dimensional space.

2sThis is a consequence of the implicit function theorem for systems of equations. See, for example, ref. 6.
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Y2 HI(X,YI,__Y2)=C3_

t

H2lx,Yl,Y2)=C5 _'_/ \'-_ _I_11_))\'-yl=fl(xL'''''- --....j- x., )

FIGURE 3--1.--Relation between integral curves and surfaces of ordinary differential equations.

But these curves must lie along the various mutual intersections of n hyper-
surfaces

H1 ---- constant, H2 ----constant, . .., Hn = constant

This is shown schematically in figure 3-1 for the case where n = 2. However,

since every solution curve of the system (3-1) must simultaneously lie on n

hypersurfaces, each of which corresponds to one of the n integrals H1,...,

H,, the solution curves must also lie along these intersections. Therefore,

every solution to the system (3-1) can be obtained as an implicit solution of the

n equations (3-7). That is, the n integrals H1, . .., H, which have a non-

vanishing Jacobian in D are just sufficient to completely determine all the solu-

tions of the systems (3-1) in D. However, the requirement that the Jacobian

(3-6) be different from zero in D implies that the integrals are functionally

independent 29 in D. We therefore anticipate that the system (3-1) will possess

n functionally independent integrals. This turns out to be the case, at least

when the region D is chosen to be sufficiently small (see ref. 7).

L

_*The functions HI ..... Hn are functionally dependent in D if there exists a nonconstant function to of H1 .....

H. such that (o(H_ ..... Hn) =0 for all x, y_ ..... ym in D. See ref. 6.
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For example, consider the normal system

xy,
dY--A_=G'(X'dx y'' y2) = y__y2 2

dy___2=G2(x, yl, y2) =_ xy2
dx y22-y2

which is defined in some region D which does not include the planes y, =__+ y2.

Since the two functions Hi(x, yl, y2)=y, y2 and Hz=yZlq-y22--x 2 satisfy the

equations

OH1 OH, OH, { xy, _+y, { xy2
-d-_x+-_y G'+-_y2 G2=O+y2 \y__y_] \y2-__y2] =0

and

OH2+ OH2 OH2 ( xy, _ ( xy2
0-"_- _ G, -4- _y2 G2=- 2x + 2y, \y_/+ 2y2 \y_--_y_] = 0

we know that H1 and H2 are two integrals oi this system. Since

O(H_'H2) 2;1 Y_ IO(y,, y2) - 2y2 =2(y22-y_)

the Jacobian of these functions does not vanish in D. And this shows that H,

and H2 are functionally independent. The solution curves lie on the inter-

sections of the surfaces H1 = constant with the surfaces Hz=constant. Thus,

every solution curve lies on an intersection of a hyperbolic cylinder and a

hyperboloid (or cone).

Now let H_, H2, . .., Hn+l be any n+ 1 integrals of the system (3-1) in

some domain D. Since each of these integrals must satisfy equation (3-5), it

follows that
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OH1

G I + . . . -t- -_y G. = O

01t2 G, = 0
G1 + . . + ay,

OH,+1 __OH,+1
Ox _ G1 + •

And it must be possible to solve these equations for 1, G1, G2, ., G, at

every point of D. However, this can happen only if the determinant of the

eoefficients

O(H1,H2, . .,Hn+I)_

O(x, yl, . . .,y,)

OH1 OH1 OH1

Ox Oyl Oy,

OH2 OH2 OH2

Ox Oyl Oyn

OHn+l OHn+l OH,+1

Ox Oyl Oyn

is zero at every point of D. But this means that H1, . .., Hn+l are functionally

dependent. Hence, every set of n + 1 integrals of the system (3-1) is function-

ally dependent. We have, therefore, shown that the system (3-1) possesses

precisely n functionally independent integrals (at least in a sufficiently small

region D).

If n funetions Ii(x, yl, • ., y,), . .., I,(x, yl, • •., yn) not all identi-

eally zero can be found sueh that

{dy,, _ G.)G1)-4- • • • A-ln \ dx
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is equal to dF/dxfor some nonconstant function F(x, yl, • •., yn), then F

will be constant along every solution curve of the system (3-1). Hence, F

will be an integral of the system (3-1). The functions 11, . .., In can be

thought of as integrating factors. 3° Although it is usually difficult to find inte-

grating factors, they can sometimes be guessed at from the symmetry of the

problem.

For example, consider the system

xl = y2 --Y3

x = Y3--yl

dy3
_-- = yl -y2

(3--8)

Then choosing 11 =/'2 = 13 = 1 gives

] yl,]+Ix Ldx (Y_-Y_)+ 1x Ld_ (Y_ 1× [_Y_

=aa__x,+a__.a__ adx + dx =-_x (y,+y2+y3)

Hence, Hl=yl+yz+y3 is an integral of the system (3-8). Now choose 11=

2yl, 12=2y2, and 13=2y3. Then

2yl [dd'_x1- (y2--y3)] + 2y2[ _x 2- (y3-yl)] + 2y3[dd-_x3- (yl- y2)]

=2Y,_x+2Y2_x+2y3_x =d (_+_+_)

Hence, H2=_+_+_ is also an integral of the system (3-8). It is easy to

verify that H1 and H2 are functionally independent.

3o See section 2.2.
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Instead of interpreting the solution (3-2) of the normal system (3-1)

as the explicit equation of a curve in an (n+l)-dimensional space with

coordinates x, yl, • •., y,,, we can interpret it as the parametric equation

(with parametric variable x) of a curve in an n-dimensional space with coordi-

nates yl, • ., yn. The parametric variable x may be the arc length or a similar

parameter for the solution curves (such as the time in a physical problem).

The fundamental theorem can still be used to show that there is a solution curve

passing through every point of any region of this n-dimensional space, provided

the functions Gi satisfy the appropriate smoothness requirements. However,

except in a certain important special case (which is the topic of the next sec-

tion), it will usually not be true that only a single curve passes through each

point of this region.

The simplicity of the first-order normal systems becomes apparent when

,equation (3-1) is written in vector notation. To this end we notice that the

coordinates of a point yi, • •., yn in the n-dimensional space can be interpreted

as the components of an n-dimensional vector y and we write 31

y= (yl, Y2, • • .,Yn)

A vector is said to be a function of a single real variable x if its components

are functions of x. Thus, if (as in the case of the solution curve (3-2) of the

system (3-1)),

yl=fl(x), • •., y,,=fn(X)

we write

y----f(x) -= (fl(x), • • .,fn(x))

al Addition of two vectors and multiplication of a vector by a scalar are defined component-wise. Thus, if y=

(yl ..... y.) and x= (Xm..... x_) are vectors and a is a number, y + x = ( (yl + xl) ..... (y. + xm) ), ay = (ay_ .....

aym). The length or magnitude of the vector y is denoted by [Yl and is defined as the distance from the origin to the
point y_ ..... ys. Thus, lY[= (_+ • • • +_)1/_. Notice that the magnitude of a vector is zero if, and only if, its
components are all zeros. The dot product or inner product of two vectors y and x is denoted by y • x and is defined

by y" x=y, xl+ . . . +y,,x_. The dot product satisfies the Schwarz inequality lY" xl _ lyl Ixl, where the vertical
lines on the left are the absolute value of a pure number and those on the fight denote the magnitude of vectors. Thus,

if [Yl _ 0 and Ixl _ 0 then [y" xl/lyf Ixl -< 1 and this quantity can be interpreted as the cosine of the angle between

the vectors y and x. If y" x=0, we say that y and x are orthogonal; and if lY" xl/lyl txt = 1, we say that the vectors
are in the same direction. The vector (1, 0, 0 ..... 0) has unit magnitude and is in the direction of the yn-coordinate
axis. The vector (0, 1, 0, 0, . .., 0).has unit magnitude and is in the direction of the y2-coordinate axis, etc. We denote
these vectors by kz, k2, etc. For more information, see ref. 8.
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Differentiation of vectors is defined component-wise, and we write

dy= (dy, ) _ df__ =dx - \ '"

If f(y_, ., y,,) is a function of the n variables y_, . .., yn and y=

(y_, • •., yn) denotes the vector corresponding to these variables, we write

f(y,, • ., y,,)=f(y)

and say thatfis a function of the vector variable y. More generally, we say that

a vector is a function of a vector variable if its components are. Thus, if yl =

fl(x), . ., yn=fn(x), then

y=f(x)=(fl(x),...,f,(x))

is a vector function of the vector variable x.

Notice that there is no such thing as the derivative of a function of a vector

variable with respect to that variable, but only pa_ial derivatives with respect
to the components of the vector variable. Thus, ifk_, . ., k,_ denote the unit

vectors in the directions of the coordinate axes, we define the vector gradient

operator X7 by

Vf(x) = k_ af(x) + +k. af(x)
OXl " " " OXn

Just as in the three-dimensional case, the effect of operating with the gradient

operator on a scalar produces a vector.

A vector function is said to be continuous if its components are continu-

ous. Thus, in the system (3-1), each Gi is a function of a real variable x and a

vector variable y and we write

Gi(x, yl, • ., y,,)=Ci(x, y)

If we let G be the vector whose components are Gi, then G is a vector function

of the real variable x and the vector variable y and
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G(x, y)= (GI(x, y), . .., Cn(x, y))

Hence, upon using the component-wise definition of differentiation of vec-

tors, the first-order normal system (3-1) can be written in the concise form

dy= G(x, y)
dx

When the first-order system (3-1) is written in this form, the analogy between

this system and a single first-order equation becomes particularly apparent.

3.2 AUTONOMOUS SYSTEMS

When the functions Gi in the system (3-1) do not involve the variable x

explicitly, the system is said to be autonomous and it can be written in the

form

-_= G1 (yl, Y2, • •., Yn)

_x 2= G2 (yl, y2, • •., yn)

(3-9)

dy/1

=Gn(y,, y2, • •., yn

If the independent variable x is thought of as representing time, autonomous

systems can be interpreted as time-independent, or stationary, systems.

The first-order normal system of n -- 1 equation

dytt -- 1

dx = G_-l(yl, y2, • •., Y_-I, x)

(3-10)
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can always be transformed into an autonomous system in n variables which has

the property that at least one of the functions on the right side never vanishes.

In order to do this, it is only necessary to introduce a new dependent variable

y,, by

yn _ ._

and then rewrite the system (3-10) in the form

dY----2_=G_ (y_, y2, • • • yn)
dx

dy2 m

_x--G2(y,, y2, • •., yn)

dY_-l=Gn-l(yl yz, • • -, yn)
dx

Conversely, if one of the Gi's of the autonomous system (3-9) in n variables

does not vanish in some domain Do, it can be transformed into a nonautonomous

system in n-1 variables plus an additional equation which can be solved to

determine the variable x once the remaining variables have been found. We

may assume without loss of generality that the notation has been so chosen

that Gn does not vanish in Do. Now in order to accomplish this transformation

put

and

x=yn (3-11)

Gi
Gi=_ --- for 1 _< i <_ (n-- 1) (3-12)

trn
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Then the system (3-9) becomes

• ., y.-1, _)

•, yn-1, ._)

dya-, =_,,_, (y,, . .., yn-,, _)
d_

(3-13)

and the equation which determines x once the system (3-13) is solved is

dx 1

--dx=Gn(y,, • ., yn-,, x)
(3-14)

It can now be shown that every solution to the system (3-13) in Do is a

solution of the system (3-9), and conversely. Thus, we may say that the systems

(3-9) and (3-13) are equivalent in Do.

The solutions of the system (3-9) in n variables can be found by solving

the n -- 1 simultaneous equations (3-13) to determine yl, • ., y,,-1 as functions

of yn. And then a single equation obtained by substituting these solutions into

equation (3-14) can be solved to determine the parametric variable x as a

function of yn. In order to emphasize the connection between the autonomous

system of n equations (3-9) and the system of n-1 equations (3-13), the

former system is sometimes denoted symbolically by

dy,_ dy2_ dy.
G--T---_--• • • =--_=dx

or, when finding the variable x is not important, by

dy, dy2 _dy.
G,--G -= • • • - G--_
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Thus, for example,

dyl_
-- G, (yl, y2, y3) = my_ly'2y_3!

consider the autonomous system of three equations

dy2 = G2 (y,, y2, y3) = - ny_y,
dx

--_Yx3= G3 (ya, y2, y3) = yly2y3

(3-15)

Upon putting _ = y3 we get

-_= (yi, y2, $) = mylYc

dy____2=_2(y,, y2,yc) = ny2
dye yc

(3-16)

and x is determined by the equation

dx 1 1

dye C,3 yly2Yc
(3-17)

The system (3-16) has the solution

yi = cle
mx212 m_/2

_- fie

c2
y2 _- _n

Finally, equation (3-17) shows that x is related to _ by

x = c3 exp dE
C1C2

62



SYSTEMS OF EQUATIONS

The interpretation of the solution of a normal system of n equations as a

curve in an n-dimensional space is particularly useful when the system is autono-

mous. This is the case because for autonomous systems, unlike nonautonomous

systems in general, there is usually only a single curve passing through each

point in this space. We can show that this is the case by applying the funda-

mental theorem given in section 3.1 to the transformed system (3-13). This

theorem applies to the y,, . .., yn-1, x space in which the system (3-13) is

defined. But in view of equation (3-11), we see that this is the same as the

n-dimensional yl,..., yn space in which the untransformed autonomous

system (3-9) is defined. Thus, suppose that the functions Gi have continuous

first partial derivatives with respect to all their arguments 32 at every point

in some domain D of the n-dimensional yl, • •., yn space and that there is

no point of D where all the Gi's simultaneously vanish. Then, because of the

continuity of the G_'s, we can assert that for any point _, . .., yO of D there

is a neighborhood Do in which at least one of the Gi's is never equal to zero.

Within this neighborhood we can transform the normal system (3-9) into the

system (3-13) and apply the fundamental theorem in the region Do. Since the

G_'s have continuous partial derivatives, we can conclude that the system (3-9)

has precisely one solution curve in the n-dimensional yl, . .., yn space pass-

ing through the point yO,..., yO. Now suppose the notation is chosen so that

Gn does not vanish in Do. Then Gn does not change sign in Do, and equation

(3-14) shows that x is a monotonic function of :_ along any solution curve

in Do. Hence, we can take x as the parametric variable for the solution curve

instead of _. Since this is true for every point of D, we arrive at the follow-

ing conclusion: 33 If the function G which appears in the first-order autonomous

system

dy = G(y)
-_x (3-18)

possesses continuous partial derivatives at every point of some domain D, and

if ]G(y) I does not vanish at any point of D, the system (3-18) has exactly

one solution curve

32Notice that in this case the existence of the partial derivatives guarantees the continuity of the functions Gi.

33We are using the vector notation introduced in section 3.1.
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y=f(x, y0) (3-19)

passing through each point yo of D.
Thus, we can think of the "solution vector" (3-19) as tracing out a con-

tinuous curve in the n-dimensional yl, • •., y,, space, which passes through

the point yo when the parametric variable takes on some value, say Xo. Such

"solution curves" are called integral curves of the system (3-18). These ideas

are illustrated in figure 3-2 for the case where n = 3.

Notice that in order to ensure that the system (3-18) has only one integral

curve passing through each point of D, it is necessary to require that IG(y)I,

the magnitude of G (y), does not vanish at any point of D. Points where ]G (y)]=

0 are called critical points of the autonomous system (3-18).

If y0 is a critical point of the system (3-18), this system must possess the
constant solution

Y----Yo

which is called an equilibrium solution.

For example, it may be verified by inspection that the solutions to the

autonomous system

Yl

'_Y2

FIGURE 3--2.-Relation between solution vector and integral curve of differential equation.
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with n > m, are

dy2_

dx -- ny:

Yl _ Cle mx

Y2 _ c2e nx

The point (0, 0) is a critical point. The integral curves of this system are the

loci of points

(y2)m=k(yl) n

where k=c_/c_. These curves are shown for the case where m and n are

positive integers in figure 3-3. It can be seen from this figure that there is

Y2

"Yl

FIGURE 3-3.--Integral curves for sample problem.
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exactly one integral curve passing through each point except the critical point

(0,0).
A vector function which is defined at each point of an n-dimensional

space is said to constitute a "vector field." Since a unique vector-valued

function G(y) corresponds to each autonomous System (3-18) and conversely,

we can say that each first-order autonomous system is characterized by
its vector field.

Consider a portion of an integral curve of the system (3-18) which passes

through a point y which is not a critical point and which lies in a domain D

where G(y) is continuously differentiable. Let S denote the arc length meas-

ured in some definite direction along this curve. Then

or

(dy2)2+ . . + (dy,)"

dS = -4-dx _d/_/ . d_._y
_l dx dx

But equation (3-18) shows that

dS
+ •a=± IGI

Hence, takingS as the independent variable in equation (3-18) shows that

dy_ dy dx G

dS

However, the vector dy/dS is the unit tangent vector to the integral curve

passing through y; and since there is an integral curve passing through each

point of D, we conclude that the vector field G(y) is tangent to the integral

curves of the system (3-18), except possibly at the critical points.

When n= 3, we can imagine that the variable x represents time and the

autonomous system (3-18) represents the steady flow of a fluid in space. At

each point y in a certain region of this space the vector G(y) describes the

velocity of the fluid at that point in both magnitude and direction. The flow
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is steady because its velocity depends only on position and does not vary with

time. The integral curve passing through the point y0 may then be interpreted

as the streamline followed by all the fluid particles which have passed through

the point y0. The velocity field is tangent to the streamlines at every point ex-

cept at the critical points which correspond to "stagnation points" where the

fluid velocity vanishes. At these points, it is possible for two or more stream-

lines to meet or for a given streamline to abruptly change direction.

By again applying the results obtained in section 3.1 to the autonomous

system (3-9) by means of the transformed system (3-13), we arrive at the

following conclusions: Suppose that D is a region of yl, • •., yn space which

contains no critical points of the system (3-9) and:that G has continuous partial

derivatives at every point of D. Then a function H(y) of the vector variable

y in D which does not depend explicitly on x is a solution of the first-order

linear partial differential equation

OH OH

c,(y) +Cn(y) 5- y=0 (3-20)

if, and only if, it is an integral of the autonomous system (3-9). If, in addition,

the region D is sufficiently small, the system (3-9) possesses precisely n-1

functionally independent integrals which are independent of x. This shows that

equation (3-20) possesses n- 1 functionally independent solutions.

The level surfaces of these integrals are hypersurfaces in the n-dimensional

yl, • •., yn space. The intersection of any n-1 of these hypersurfaces (no

two of which correspond to the same functionally independent integral) is

an integral curve of the system (3-9) in this space.

The partial differential equation can be written more compactly by using
the vector notation introduced in section 3.1 to obtain

G ._ZH=0

In this form the equation has an immediate geometrical interpretation. As in

three-dimensional space, the vector _TH is perpendicular to the level surfaces

of the function H. Hence, the differential equation (3-20) merely states that the

vector field G is everywhere tangent to the level surfaces of its solutions. This

is consistent with the facts that the integral curves of the system (3-9) lie on

these level surfaces and that the vector field G is tangent to these integral

curves.

67



DIFFERENTIAL EQUATIONS

3.3 SOLUTIONS OF THE FIRST-ORDER LINEAR PARTIAL DIFFERENTIAL EQUATION

Since equation (3-20) cannot have n functionally independent solutions,

there must exist for any n solutions H1, . .., Hn of equation (3-20) a non-

constant function to such that

to(H1,Hz,...,Hn)=O

for all y_, . ., y_ in some region D. Now it can be shown (ref. 6) that this

equation can always be solved for Hn to obtain

H,=F(HI, Hz, . . .,H,,-1)

provided that H1, ., H,,__ are functionally independent. But since H1, . ..,

H, were any solutions of equation (3-20), this shows that every solution of

equation (3-20) can be expressed as a function of any n- 1 functionally inde-

pendent solutions. Conversely, it is easy to verify by direct substitution that if

H_,/-/2, . •., Hn-1 are any solutions of _equation (3-20) and F is any continu-

ously differentiable function of H1, . .., Hn-1, then F(H_,//2, . .., Ha-l) is

also a solution of equation (3-20). Thus, we have shown that H is a solution of

the linear partial differential equation (3-20) if, and only if, there is a function

F such that

H(y) =F(H_(y), . .., Hn-l(y))

where H_ (y) , . .., Hn-l (y) are any n-- 1 functionally independent integrals

of the autonomous system (3-9) which do not depend on x.

Thus, the most general solution of the partial differential equation (3-20)

can be found if the system (3-9) of ordinary differential equations can be solved.

The differential equations (3-9) are therefore caned the characteristic equations

of the partial differential equation (3-20) and their integral curves are called

characteristic curves of the partial differential equation.

For example, the characteristic equations of the partial differential

equation

OH OH+ OH 0
(y2--y3) _y';yl+ (Ya--Y,) 0)'2 (yl--Y2) _y_ya=

(3-21)
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are the equations of the system (3-8). But we have shown that this system has

the two functionally independent integrals

HI = yl + y2 + y3

H2= y2 + y2 + y_

Thus, for every differentiable function F, the function

H=F(H1, //2)

must be a solution of equation (3-21). This can easily be verified by substitut-

ing the relations

OH_ OF OF for j= 1, 2, 3
Oy._ OH_ t- 2y_ 0H2

into equation (3-21).

The level surfaces of the integral H1 are planes, and the level surfaces

of the integral//2 are the surfaces of spheres. The intersections of the surfaces

H1 =constant with the surfaces H2=constant are therefore circles. Hence,

the characteristic curves of equation (3-21) are circles.

3.4 QUASI-UNEAR PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

There is also a close connection between the quasi-linear partial differential

equation

G,(y_, . • .,yn-l,f)_y + +Gn-,(y,, . . .,yn-l,f)

af
• " " OYn-1

= G,,(y,, . .., y,,_,,f) (3-22)

and the linear partial differential equation (3-20) and, therefore, also between

this equation and the autonomous system (3-9). In order to show this, let

H = h (y,, . ., yn)
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be any solution of equation (3-20) such that OHlOyn is not identically zero. 34

Then the implicit function theorem shows that there is a neighborhood D of

any point y0 for which

such that the equation

has a solution

OH
--#0 (3-23)
Oyn

h ( yl , . . . , yn ) = cl

y,,=f(yl, • •., Yn-1, Cl)

(3-24)

(3-25)

in D. This means that when equation (3-25) is substituted into equation (3-24),

the resulting expression is identically constant for all values of yl, • •., y,,-1.

Hence, upon differentiating this expression successively with respect to

yl, • •., Yn-1, we obtain

OH OH Of
-Jf- --

Oyl c)yn Oyl

-0

OH _+ OH of _ 0
OYn-1 Oyn OYn-a

But when these relations are substituted into equation (3-20), we find that

OH(Gn-GIOf . . -Gn_l Of )ayn Oy, 0y--n--; =0

And, in view of equation (3-23), this shows that equation (3-25) is a solution

of equation (3-22).

34This means that H is not independent of y,,.
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Now there are n-1 functionally independent integrals H1, . .., Hn-1

of the system (3-9), which are therefore functionally independent solutions

of equation (3-20). If there is some point y at which these integrals all satisfy

condition (3-23), we can find at least n- 1 functions

Y, =)q (Y,, • •., yn-1, c,)

Y,,=f,,-I(Yl, • •., yn-1, c,-1)

(3-26)

which, respectively, satisfy the equations

Hl=hl(yl, • •., y,,) =cl

H,-1 = hn-1 (yl, • ., yn) = cn-1

(3-27)

in some neighborhood D of the point y. Therefore, each of the functions (3-26)

is a solution to equation (3-22) in D. Since equations (3-26) determine explic-

itly the same surfaces as equations (3-27) determine implicitly and since

these surfaces determine the integral curves of the system (3-9), the equations

of this system are also called the characteristic equations of equation (3-22).

For example, the partial differential equation

(y2--f) _y + OV--Y_) oy20-flf-f= Yl--Y2 (3-28)

has the same characteristic equations as the linear equation in the preceding

example, namely equations (3-8). These equations, as we have seen, have the

two functionally independent integrals
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Hl = yl + y2 + yz

H_=_+_+_

And equation (3-28) therefore has the solutions

f, = c, - (y, + y2)

/_=_+ _/c_- (_+_)
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CHAPTER4

ElementaryMethodsforSecond-OrderEquations

In this chapter several methods for obtaining solutions to second-order

differential equations are presented. Even though each of these methods applies

to a relatively narrow class of equations, they are still of sufficient generality

to be useful in practice. However, unlike the methods presented in chapter 2

for solving first-order equations, most of the techniques presented in this chap-

ter will not by themselves yield solutions to equations. They are, in fact,

methods for transforming certain types of equations into simpler equations

whose solutions can hopefully be found by known methods. We have already

found a number of method_ for solving first-order equations. The only other

general class of equations for which it is possible to find numerous solutions

is the class of linear equations introduced in chapter 1. Therefore, in section

4.1 we present some techniques for reducing second-order equations to equa-

tions of the first order. And in section 4.2 we present techniques which trans-

form certain types of nonlinear equations into linear equations. Finally, in

section 4.3 we present a number of unrelated methods. Although many of the

methods presented in this chapter are applicable, with some obvious modifi-

cation, to equations of higher order, we shall, for simplicity, limit the dis-

cussion to second-order equations.

As indicated in chapter 1, the most general second-order differential

equation is an equation of the form

)' dx' y' x = 0 (4-1)

whereas, the most general normal second-order equation is of the form
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d2y G [dY, )\ y,x
(4-2)

A general solution of equation (4-1) or of equation (4-2), if it exists, will

involve two arbitrary constants. As in the case of first-order equations, there

may be any number of general solutions to these equations. In addition, equa-

tion (4-1) may possess singular solutions. These solutions are discussed in

section 1.5. The methods presented in that section should be used to find any

singular solutions which may be present since such solutions can be important

in physical problems.

Finally, the second-order linear equation is an equation of the form

d2y _+ P2 (x)y = P3po(x) + p,(x) (x) (4-3)

We shall assume the coefficients are continuous. Upon dividing through by

the leading coefficient p0 (x), we obtain the (essentially) normal form

d2y 4-p(x) _xx+q(x)y=r(x)dx _
(4-4)

This differential equation is equivalent to equation (4-3) in any interval in

which po(x) does not vanish.

4.1 EQUATIONS WHICH ARE REDUCIBLE TO FIRST-ORDER EQUATIONS

In this section a number of techniques, which can be used to reduce

certain types of equations to equations of the first order, are described.

4.1.1 Dependent Variable Missing

When a second-order differential equation does not explicitly contain the

dependent variable y, it must be of the form

d2ydy )F _x 2' dx'-- x =0 (4-5)

But this equation can be written as a first-order differential equation
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Idp, x)r_-_x p, =0

for the quantity p defined by

_dy
P - dx (4-6)

It may or may not be possible to solve this first-order equation in any given

case. However, suppose that it can be solved and that its integral is

f(x, p) = constant = C1 (4-7)

At this stage, there are two possible ways of proceeding, depending on whether

it is easier to find an explicit formula for p as a function of x which solves 35

equation (4-7) or whether it is easier to find an explicit formula for x as a

function of p.

First, suppose that the former case occurs. Thus, we can find an explicit
formula

p = g(x, C1)

for a solution to equation (4-7). Then, in view of equation (4-6), this equation

can be immediately integrated to obtain a general solution

of equation (4-5).

y= f g(x, C,)dx+C2

Next suppose that it is easier to find an explicit formula

x = h (p, Cl) (4-8)

for a solution to equation (4-7). Substituting equation (4-8) into the relation

dydp

P= dpdx

35See section 1.l.
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shows that

__p dx dh= P -_p= P -_p

Hence,

dh
y=f , @+c2

And, upon integrating this by parts, we obtain the equation

y=ph(p, C,)-f h(p, C1)dp + C2 (4-9)

which together with equation (4-8) determines the solution y of equation (4-5)

parametrically as a function of x (with p being the parametric variable). This

parametric function involves two arbitrary constants.

For example, the equation of the curve followed in the pursuit of a prey

which moves along the y-axis (ref. 9) is

K _= (a-x)y"

where K is the ratio of the velocity of the prey to the velocity of the pursuer.

Put y' =p to obtain the first-order separable equation

K lx/T_p 2= (a-x) dp

which can easily be solved (section 2.3) to obtain

dy 1 [Cl(a_x)K_ 1 (a__x)_K]"_x=P=--"2" "_1

If K # 1, this equation becomes, upon integration,

1[C, 1 (a_X)I_K]+C2Y='-2 _ (a--x)K+I+c,(K-- 1)

(If K = 1, the integration yields a logarithmic term.)
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Independent Variable Missing

The general form of the second-order equation in which the independent

variable does not appear explicitly is

F _-_x2, y=0dx'

We again define p by

dy
P = dx

Then substituting this together with the relation

(4-10)

(4-11)

y=h(p, C,) (4-14)

7Y

On the other hand, if it is easier to find a formula

of equation (4-10).

dy
dx 2- dx- dy dx =dy p (4-12)

into equation (4-10) shows that p is determined by the first-order differential

equation

Suppose that this equation can be solved and its integral is

f(p, y) -- C, --- constant (4-13)

It is again possible to proceed in two different ways. First, suppose that it is

easier to find a formula for the solution p=g(y, C1) of equation (,1,--13) for p

as a function of y. Then combining this with equation (4-11) and integrating

provides a general solution

fg, dYc,+C2=x
tY, )
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for the solution of equation (4-13) which expresses y as a function of p, equation

(4-12) shows that

dx_l dy l dh
-_,_ dp:-_ dp

But this equation can be integrated by parts to obtain the equation

x=C2A-l h(p, C,)+ f 1 hP . _-_ (p, C1)dp (4-15)

which, together with equation (4-14), determines the solution to equation (4-10)

parametrically.

For example, the differential equation

d2y (dY__ 2
y-_x2+r\-_x/ =0 (4-16)

occurs in the field of fluid dynamics. 36 Substituting equations (4-11) and (4-12)

into this equation yields the first-order equation

dd_yPy-_- t,p 2 = 0yp

Since this equation is separable, it can be integrated to obtain p=C1/y _.

Hence, combining this with equation (4-11) and integrating shows that

y_+l = ClX + C2
v+l

is a solution of equation (4-16).

Notice that, when A, B, C, and D are constants, the differential equation

y" =,4 + By + Cy2 + Dy 3

36More specifically, it governs the velocity field in a boundary layer in the neighborhood of the separation point.
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does not explicitly contain the dependent variable x. When the procedure

just described is applied to this equation, we encounter integrals which usually

cannot be evaluated in terms of elementary functions. These integrals, however,

can always be expressed in terms of elliptic functions. The differential equation

is therefore called the elliptic equation. For more details concerning the proce-

dures involved in evaluating these integrals and the properties of elliptic

functions, the reader is referred to reference 10 (chapter 6 and section 11 of

chapter 7).

Finally, notice that a linear homogeneous equation does not contaih the

independent variable explicitly if, and only if, it has constant coefficients. 3r

4.1.3 Homogeneous Equations

The general definition of a homogeneous function of degree k has been

given in section 2.3. We shall now show that if the second-order differential

equation (4-1) has certain homogeneity properties, it can be solved by ele-

mentary means.

4.1.3.1 Equations homogeneous in the dependent variable and its deriva-

tives.-First, suppose that equation (4-1) is homogeneous of degree k in the

variables y, y', and y"; that is, it satisfies the homogeneity condition

F(ty", ty', ty, x) = t_F(y '' , y', y, x) (4-17)

for any number t. Hence, if we put t= l/y, equation (4-17) becomes

(.y." y' ) 1 ._ ,,F\y, y,l,x =_-_rty ,y',y,x)

which shows that the differential equation (4-1) can be written in the form

(y y)F , y, 1, x -- 0 (4-18)

by factoring out yk. In order to reduee the order of this equation, define the

function u (x) by

3_We assume that the reader knows how to solve linear equations with constant coefficients.
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Then

P

Y

t P

u_ Ur-+- U2
Y

Upon substituting this, together with equation (4-19),

we obtain the first-order equation

F(u'+u2, u, 1,x) =0

Suppose this equation can be solved and its integral is

f(u,x)=C,

Then solve equation (4-21) for u as a function of x to obtain

u=g(x,C_)

But substituting this into equation (4-19) and

original equation (4-1) has the solution

into

integrating

In y= fg(x, C1)dx:+'C2

(4-19)

equation (4-18)

(4-20)

(4-21)

(4-22)

shows that the

(4-23)

If the differential equation (4-1) is linear, the first-order

obtained by this method will be a Riccati equation which

more difficult to solve than the original equation.

As an example of the method, consider the equation

equation (4-20)

will usually be

t_(y '', y', y, x)= yy"- y'2+ y_x =0 (4-24)

and replace y, y', and y" by ty, ty', and ty", respectively, to get

(ty) (ty") - (ty') 2 + (ty)2x = t2(yy '' -y'2 +y_x)=t2F(y '', y', y, x)
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This shows that F is homogeneous of degree 2 in y and its derivative. Hence,

upon introducing the transformation (4-19), the differential equation (4-24)

becomes

u'+u 2-u2+x =u'+x=0

But this equation can be immediately integrated to obtain

Hence,

X 2,nY=fIcl
The solution to equation (4-24) is, therefore, given by

y=C3 exp (C,x--_)

where we have put C3 = eC2.

4.1.3.2 Isobaric equation.- The isobaric equation of the first order in

normal form was encountered in section 2.3. In the general case, the function

/dmy dm-ly dy )F_xm, dxm-1, " " " ,-_-_x, Y, x

is said to be isobaric if there exist numbers k and l such that

F: t t-m dmy t l-m+1 t t-1 try, t
dx---'_, dxm_l, • ..,

__(dmydm-ly dy)-tkF _x m' dx m-l' " " "' dx' y' x (4-25)

for all values of t. And the differential equation

F[y(m), y(m-,), . .., y,, y, x] =0
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is said to be isobaric if the function F is isobaric. It is easy to see that the dif-

ferential equation (2-17) is of this type (for m= 1). For the second-order dif-

ferential equation

F(y", y', y, x) =0 (4-26)

the condition (4-25) becomes

F(tZ-2y '', tl-ly ', tZy, tx)= tkF(y '', y', y, x) (4-27)

Thus, in particular, upon replacing t by 1/x, equation (4-27) becomes

[ y" y' ) 1 ,F_,x-7:-_2, xt_ ,, _, 1 =-X _ F(y' , y', y, x) =0

And this shows that equation (4-26) can be written in the form

__'i-/y' ' Y Y 1)F\._ 2'xl-l'xl'
_0

However, when we introduce the new variables

U _ _-Iy

and

(4-28)

(4-29)

sr = In x (4-30)

(4-31)

into this equation, we obtain an equation

F[d2u . du du ][d-_2-e (2/- 1) _-_÷ l(l- 1)u, _-_+ lu, u, 1 =0

in which the independent variable _: does not appear explicitly. Since this

equation can always be reduced to a first-order equation by the methods of

section 4.1.2, it follows that the isobaric equation of the second order can also

be reduced to such an equation.
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The homogeneous linear isobaric equation of the second order is an equa-

tion of the form

x2y '' -4-poXy' + qoY = 0 (4-32)

where p0 and qo are constants. It is known as the homogeneous Euler equation.

Since this equation satisfies condition (4-27) with l=k=0, the change of

variables u = y, sc= In x will transform it into the equation

d2u -_ + qou = 0d_ 2 4- (p0-1)

The independent variable does not appear explicitly in this equation and the

coefficients are constants. 3s

This equation, therefore, has two solutions of the form u = e c_, one for each

of the roots of the equation.

C2+ (p0-1)C+q0=0

It is easy to see that the general Euler equation

x2y '' + poxy' + qoy = r(x)

can also be transformed into an equation with constant coefficients by the

change of variables

u = y _:=lnx

A less elementary example of an isobaric equation is provided by the

equation

3 (y)2F(y",y',y,x)=yy"---_y'2+ --0 (4-33)

It is easy to verify that, when the function F is given by equation (4-33), the

condition (4-27) will be satisfied for any value of l provided that k= 2l-2.

Hence, upon introducing the change of variables

asWhich is as it should be since the equation is linear.
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I
_=ln x

the differential equation (4-33) is transformed into the equation

d2u+(/ _ l ldU3/du\2 / l )2U d_ 2 \2--1/u-_--'_-'_ / +\_--I u2=0 (4-35)

Since in this case any value of l can be used, we choose its value to

simplify equation (4-35). This is accomplished by setting l= 2, whereupon

equation (4-35) becomes

dZu 3 Idtt_2
Ud 2 4\d ] =°

But this is a special case of equation (4-16) with v=-3/4 and, therefore, has
the solution

(4-34)

4U 1/4= C1_+ C2

Hence, by using equations (4-34) and (4-35), the solution to equation (4-33)

is found to be

y=x2( C11nx+C2 ) 44

4.1.4 Method of Variation of Parameters

This method applies only to linear equations. We have seen in chapter 1

that the homogeneous equation (associated with eq. (4-4))

y"+p(x)y'+q(x)y=O (4-36)

possesses exactly two linearly independent solutions in any interval in which its

coefficients are continuous, and that the general solution of the nonhomoge-
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neous equation (4-4) in this interval is the sum of any particular solution of that

equation plus an arbitrary linear combination of two linearly independent

solutions of (4-36).

We now suppose that by some means a nontrivial solution yn of the asso-

ciated homogeneous equation (4-36) has been found. Substituting

y = vyn

(where v is a function to be determined subsequently) into equation (4-4) and

using the fact that yn satisfies the homogeneous equation (4-36) to simplify

the result shows that

ynv" + (2y'H + pyn)v ' = r

But this is a first-order linear equation for v'. It can therefore be solved by the

methods of section 2.3, to obtain

y_v' e _p_ = f r(x)y,,(x)e fp'x' dx+C,

When this equation is solved for v' and integrated, we obtain an expression for

v (in terms of known functions) which contains two arbitrary constants. Hence,

substituting this expression into y= yHv gives the general solution to equation

(4-4).

For example, it is easy to find by inspection that yn=x is a homogeneous

solution of the equation

2 x3+3x
y, , 2x y,-4------_y= (4-37)1+x 2 1+ lWx 2

Hence, substituting y=xv into this equation shows that v' satisfies the first-

order linear equation

2 x2+3
Vtt.-b Vt __

x(x2+ 1) x2+1

which can easily be integrated to obtain
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N2/3 t ._3

X2-4- l X2A - ]
_C1

But solving this equation for v' and integrating shows that v is given by

x2 /1)v=-_+Ct X--x +C2

Therefore, the general solution to equation (4-37) is

X3 2

y=xv='_+Ct(x -1) +C2x

4.1.5 Equations Invariant Under a Transformation Group

The group-theory method for reducing the order of equations is a generali-

zation of all the techniques previously discussed in this section. However, this

technique cannot be applied routinely since, as will be seen, it is necessary to

find a group under which a given equation is invariant and there is no con-

structive procedure for accomplishing this. The method is more useful for

working backwards to find general methods for solving particular classes of

equations by starting with a given group and testing equations for invariance

under this group in much the same wa3, that equations are tested to see if they

are homogeneous.

A single parameter Lie group 39 in two dimensions is a family of coordinate
transformations

x,= f(x, y; 0_) ]

fyl =g(x, y; a)
(4-38)

in which the members of the family are individuated by the values of the param-

eter a. In addition, the family must contain an identity transformation which,

without loss of generality, we can associate with the value a-- 0. Thus

39Various continuity hypotheses, which will not be presented here, are required for a rigorous treatment of the

theory.
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x = f(x, y; O)

y=g(x, y; O)

Consider an infinitely differentiable but otherwise arbitrary function of the

coordinates F(x, y). If the point (x, y) is transformed by the group (4-38) into

the point (xl, yl) for a particular value of a, the value ofF at (xl, yl) is given

by the Taylor series whose leading terms are

c3fc3 . 0g 0 _ F(x,y)+...F(x,,y,)=F(x,y)+t_ _-_a_xx-r _-_ _yy)_ = o

[ 0 0]= F (x, y) -4- a _ (x, y) _-4- _/(x, y) _-_ F (x, y) +...

(4-39)

where we have put

Og ) (4-40)and _/(x,y)= _aa _=o

In particular, if F is taken successively as x and y, then

x_=x+ct_(x, y)-4-. . . I

!ym = Y+ 47/(x, y) +..

(4-41)

When ol is infinitesimally small, the transformation (4-41) differs only infin-

itesimally from the identity transformations; therefore, s_ and 7/are referred to

as the infinitesimal transformations of the group. The operator

0__.+ 0
U- _(x, y) Ox 7/(x, y) 0--y

is called the infinitesimal operator of the group. By using this operator notation,

the Taylor series (4-39) can be expressed as

F(x_, y_) =F(x, y) + aUF-f-lot2U2F d - . . .
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But this series can be formally summed to obtain

F(x_, yl)=eaVF(x, y)

In the particular cases where F is taken to be the coordinates themselves, this

becomes

These equations are equivalent to the equations (4-38) which define the original

finite transformation. This shows that the finite transformation is completely

determined by the infinitesimal transformations.

In order to illustrate these ideas, consider the magnification group

xl=- f(x, y; ol) -- eax I

y_=g(x, y; a) --e"y
(4-42)

It is apparent that we obtain the identity transformation when c_= 0. Inserting

the equations of this group into equations (4-40) shows that the infinitesimal

transformations of this group are

_(x, y)=(_)_= o=X

and therefore that the infinitesimal operator is

a a

U = x -_x + Y _y

Applying this operator repeatedly to the coordinates yields
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Ux=x Uy=y

U2x = x U2y = y

U3x = x UZy = y

Hence,

1 2 1
xl=x+ax+_a x+_. aZx+.

l 2 1 3
y _= y + oty +-_ ot y +-_.. ot y + . . .

And upon summing these series, we obtain the original group

X 1 = eax Yl = eaY .

The differential equation

G(x, y, y', y")=O (4-43)

is said to be invariant under the group (4-38) if introducing the new variables

xl and yl, given by equations (4-38), into this equation leads to the equation

G(xl, y_, y'_, y'_')=O

This means that the change of variable given in equations (4-38) does not alter

the form of the differential equation (4-43).

For example, the differential equation

G(x, y, y', y")=xy"--F( y, y')---0 (4-44)

is invariant under the magnification group (4-42) since it follows from equations

(4-42) that
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Y= y..._l dy _ dy, d2y_ d2y,
x x,' _x- dx---_' Xdx---7-xl dx _,

We state without proof that a necessary condition for the differential

equation (4-43) to be invariant under the group (4-38) is that

UoG = 0 (4-45)

where the operator Uo is defined by

0__+
U o = s__x + "Ocgy _ cgy---7+ X _-y, ,

with

and

d 2¸
= a'q y,, d_ , d2_

X dx 2 -_x-Y dx 2

In performing the partial derivatives we treat x, y, y', and y" as independent

variables; whereas, in performing the total differentiations we treat these

quantities as functions of x.

For example, since we have shown that

s_=x _=y

for the magnification group (4-42), it follows that

_ = y, _y, dx_=0

X=y,, ,,dx ,-y _xx-Y -0--0
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for this group. The operator Uo is, therefore, given by

O 0

Uo = x -_x + y -- (4-46)Oy

But since

O--F(Y'Y)=Y- O---F( y y)OxxOy '

applying the operator (4-46) to equation (4-44) shows that

OF OF

UoG = -- y -_y + y -_y = O

which is consistent with the result obtained in the previous example.

We have shown in chapter 3 that the system 4°

dx dy dp

_(x,y) - _l(x,y-------_= g(x,y,p) (4-47)

has two functionally independent integrals, u (x, y) and v (x,y,p), one of which

can be chosen independent of p. The following result allows us to apply the

ideas of group theory to reduce the order of a differential equation: If the

differential equation (4-43) is invariant under the group (4-38), then the

equation obtained by introducing the integrals u and v as new variables in this

equation is of the first order.

Thus, we have seen in the preceding examples that equation (4-44) is

invariant under the magnification group (4-42) and that, for this group,

s_=x _/=y g=0 X=0

Hence, the system (4-47) becomes

dy_ dp
x y 0

4°We have written p = y'.

91

488-942 0 - "/3 - 7



DIFFERENTIAL EQUATIONS

which has the two functionally independent integrals

But since

we see that

u = y and v = p
x

y)_-_-Zu_=_

dv

xy"= _ (v--u)

Hence, upon introducing the new variables u and v into equation (4-44), we

get the first-order equation

d_ = F(u, v)
du u- v

It is easy to see that equation (4-44) is the general isobaric equation

with l= 1. For this case the group-theory method is the same as the method

given in section 4.1.3.2. In fact, all the methods of solution given up to now

in this chapter are equivalent to the group-theory method when used in con-

junction with certain well-known groups.

For example, the equation with the dependent variable missing, treated

in section 4.1.1, is invariant under the translation group

And the equation with independent variable missing, treated in section 4.1.2,

is invariant under the translation group

Xl=X+O_

yl=y
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The isobaric equation with/=0, treated in section 4.1.3.2, is invariant under

the attine group

Xl _ e_x

Yl = Y

And the homogeneous equation treated in section 4.1.3.1 is invariant under

the affine group

Xl_X

yl = e_y

The general linear equation discussed in section 4.1.4 is invariant under the

nonuniform-distortion group

Xl_X

y, = y + o e (x)

where _b is any homogeneous solution of the equation.

In each of these cases the group-theory method is entirely equivalent to

the method already introduced.

4.1.6 Exact Equations of the Second Order

We introduced the exact equation of the first order in section 2.2. We

shall now extend the ideas presented therein to the second-order differential

equation

F(y",y',y,x) =0 (4-48)

We say that the differential equation (4-48) is exact if there exists a function

q_(y', y, x) such that

F_-
dx

(4-49)
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Suppose that such a function _b exists. Then every solution of equation

(4-48) must also be a solution of the first-order differential equation

6(Y', Y, x) = C, (4-50)

for some constant C1. Hence, the problem of solving equation (4-48) can be

replaced by the problem of solving the first-order equation (4-50). We can

therefore say that equation (4-48) has been reduced to the first-order equation

(4-50). Upon recalling the definition given in section 1.3 we see that 6 is a

(first) integral of equation (4-48).

It follows from the chain rule that

d--_--OO-_xx+O_yy Y'dx--+ O__y,y,, (4-51)

where the variables x, y, and y' are treated as independent in forming the

partial derivatives. Hence, it follows from equation (4-49) and the fact that 6

does not depend on y" that the differential equation (4-48) must be an

equation of the form

F (y", y', y, x) =f(x, y, y' )y" +g(x, y, y') =0

where 41

(4-52)

f (x, y, p) = 6v (4-53)

g(x, y, p) = 6x + pcby (4-54)

It is now easy to verify by substituting in equations (4-53) and (4-54) that f

and g satisfy the conditions

fxx + 2pfxy + p2fy_ = gxp + Pgup - gYl (4-55)

J+ pfvv + = gyp

41As usual, we have put p = y'. The subscript notation for partial derivatives is being used.
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We have therefore shown that, if the general second-order equation

(4-48) is exact, it must be of the first degree and, hence, of the form (4-52).

And the functions f and g in this equation must satisfy conditions (4-55).

Then the equation will have a first integral 6 (and therefore can be reduced

to a first-order equation) which can be found by integrating equation (4-53)

with respect to p (at constant x and y) to obtain

6= f f(x,y,p)dp+h(x,y) (4-56)

where h is an arbitrary function which arises from the integration. Now if

the differential equation is exact, it will always be possible to determine the

function h so that, when equation (4-56) is substituted into equation (4-54),

the latter equation will be identically satisfied.

In order to illustrate the method, consider the equation

F(y", y', x) = xyy" +xy'2+ yy '= 0 (4-57)

For this equation the functions f and g (in eq. (4-52)) are given by

f= xy I

g= xy 'z + yy' = xp z + YP J

(4-58)

It is easy to verify that these relations satisfy conditions (4-55). Hence, equa-

tion (4-57) is an exact equation.

Substituting the first of equations (4-58) into equation (4-56) shows that

6 = pxy + h (x, y)

and substituting this and the second equation (4-58) into equation (4-54)

shows that

xp 2 + yp = yp + hz + p2x + phy

But this equation is satisfied by taking h= constant. Hence, equation (4-57)
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has the first integral

d_= pxy = y' xy = Cl (4-59)

where Ca is a constant. But this first-order equation is separable and can be

integrated immediately to obtain the general solution

=Cllnx+C2

of equation (4-57).

Sometimes a first integral of an exact equation can be found by inspection

simply by collecting terms and writing the equation in the form (4-49). Thus,

since

d yy, = y,2 + yy,,
dx

the differential equation (4-57) can also be written as

d
F(y', y,x)=x _ (yy') + (yy')--0

or

Hence,

d

F(y', y, x) = _ xyy' = 0

!

6 = xyy

which is the same as equation (4-59).

The general linear equation (4-3) is of the form (4-52) with

f (x, y, y') = po(x)

and

g(x, y, y') = pi(x)y' + pz(x)y- pn(x)
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The second condition (4-55) for exactness is automatically satisfied; and the

first condition is satisfied if, and only if,

d2po dpi
(Ix 2 dx -4- p2 = 0

And when this is the case, equation (4-56) becomes

th = po(x)p + h(x, y)

But substituting this into equation (4-54) shows that

dx - pl + p = p2y Ox p3

Hence, it follows from equation (4-60) that

Oy[\dx-- p, y+h P+-_x dx pi y+h +p3=O

It is easy to see that this equation will be satisfied when h is given by

Hence, we have

equation is

(4-60)

) fh= \ dx -- Pl y- p3(x)dx

shown that the first integral of the general, linear, exact

) fqb= po(x)y \ dx - p' y- p3(x)dx= Ci

This is a linear first-order equation and can, therefore, be solved by the methods
of section 2.3.

Just as in the case of first-order equations, we can sometimes find an

integrating factor _(x, y, y') for an equation of the form (4-52) which is not

exact. Thus, a function _/(y', y, x) is an integrating factor of equation (4-52) if
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_/F=0

is an exact equation.

For example, Liouville's equation

y,, + g(y)y,2+ f(x)y,=O

is not exact; but, upon multiplying through by _---1/y', we obtain the equation

ly,, y,
y, +g(y) +f(x) =0

which can be written as

d [ln y'+Y(y) +X(x)] =0
dx

where Y(y) = f g(y)dy and X(x) = f f(x)dx.

Equation (4-61) is therefore exact and its first integral is

(4-61)

=ln y' + Y+X=Co

But, upon putting C_ = eCo, we obtain the separable equation

y' e r = C1e-X

which can be immediately integrated to obtain the general solution

e Yty) dy = C_ f e-Xtx)dx + C2

to Liouville's equation.

Let po(x), pi (x), and 102 (_) be the coefficients of the linear homoge_us

equation
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PoY" +Pl Y' +P2Y = 0

and let _(x) be a nontrivial solution of the equation

po_/" A-(2Po--p,)T/' A- (Po--P'1-4-p2)n-_ 0

which can also be written as

( npo )" - (rip,)' + np_ = 0

(4-62)

(4 -63)

(4-64)

Since equation (4-60) is a necessary and sufficient condition that equation

(4-3) be exact, equation (4-64) shows that the equation

('OPo)Y'+ ('OP,)Y' + (_/p2)y---- 0

is exact. But this implies that _ is an integrating factor for equation (4-62).

The linear homogeneous equation (4-63) for the integrating factor "Ois known
as the adjoint equation of equation (4-62).

4.2 EQUATIONS WHICH ARE EQUIVALENT TO A LINEAR EQUATION

4.2.1 Equations Which Can Be Transformed Into a Third-Order Linear Equation

In section 2.4, we have seen that the first-order Riccati equation could

be transformed into a second-order linear equation by the change of variable

u = e- f y¢,)h(x),, (4-65)

where h (x) is not identically zero in the interval of interest.

Since linear equations are generally much easier to solve than nonlinear

equations, the additional complexity incurred by raising the order of the equa-

tion is often justified. We shall now show that the change of variable (4-65)

transforms the second-order nonlinear equation

y" -4-p(x)y" - 3h(x)yy' ----f(x) -4-g(x)y + [h' (x) -4-p(x)h(x) ]y2 _ h2(x)ya

(4-66)
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where p(x), h(x), and g(x) can be any functions of x, into a linear equation

of the third order. To this end we differentiate equation (4-65) three times in
succession to obtain

u' =--yh(x)u (4-67)

u"= (y2h2--y'h + yh')u (4-68)

( 2h'y, h" )u'" =-h y" +3hyy' +---h-- +--_-y-3y2h' +h2y _ u (4-69)

Substituting for y" from equation (4-66) into equation (4-69) gives

And using equation (4-68) to eliminate y' in this equation gives

/h" 2h '2

Hence, it follows from equation (4-67) that u satisfies the third-order linear

equation

u'" + pl (x)u" + q, (x)u' + r, (x)u= 0 (4-70)

where

P

p,(x) =p--2

h" h '2 , h'
q,(x) =----_-+g- 2 --_-. p -_-

O0

rl (x) _- hf



ELEMENTARY METHODS FOR SECOND-ORDER EQUATIONS

For example, consider the equation

y" ÷ 3yy' .÷y3=0 (4-71)

This equation is of the form (4-66), with p=f=g=O and h=-l. Hence,

pl = q, = r_ = 0, and equation (4-70) becomes

UltimO

But this equation has the solution

u = Co + Clx + C2x 2

which can be substituted into equation (4--67) to show that equation (4-71)

has the general solution

2x÷ b_

Y = x 2 -4- b_x -t- bo

where we have put b_ = C_/C2 and b0 = Co/C2.

4.2.2 Equations Which Are Equivalent to a Second-Order Linear Equation

We shall now consider a class of second-order nonlinear equations whose

solutions can be expressed in terms of the solutions of second-order linear

equations. The work on this problem began with Painlev6 (ref. 11) and was

carried on by Herbst (ref. 12), Gergen and Dressel (ref. 13), and Pinney (ref. 14).

We shah present only the results here without proving any of the assertions.

The references given should be consulted for details. Thus, for any functions

w(x) and q(x) of x, any function Y(y) of y, and any constant a, the differential

equation

y,, 1-Y'(y) ,2 w'(x) y,
= Y(y) Y-w'_

has a solution of the form

= [q(x) -t-aw2(x) exp

y= O(to l/z) (4-73)
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where O is the inverse of the function 0 defined by

O(y) = expf y) (4-74)

(that is, O [0 (y)] = y) and the function to is given by

to = C,u 2 + C2u 2 + C3ulu2 (4-75)

where C1, C2, and C3 are constants and ul and u2 are two linearly independent

solutions of the linear differential equation

W t
U" (X) U'

w(x) --q(x)u=O (4-76)

For example, consider the equation introduced by Painlev6 (ref. 11)

y,, +b
Y y,2 +f(x)y'= g(x)y (4-77)

where b is a constant and f and g are any functions of x. This is a special case

of equation (4-72) with (1 - Y' )/Y= b/y, w'/w =-f, a = 0, and q = (1-4- b)g(x).

Hence, we can take Y=y/(b+l) and equation (4-74) becomes

Therefore,

exo[,,÷1,in

O (0) = 01/(b + 1)

In this case the differential equation (4-76) is

u" + fu'- (l + b)gu=O

And the solution to equation (4-77) is given by
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y = 0(tol/2)= (6t)1/2) 1/(l+b) = (ClU2.3t-C2u2-_-C3111u2)1/[2(1+b)]

(4-79)

(4-78).where ul and u2 are two linearly independent solutions of equation

It can be verified by direct substitution and by applying equation (4-78) that

equation (4-77) will be satisfied if, and only if,

c3= 2v C- ,

Hence, equation (4-79) becomes

y= (N/'_I ,, + X/-_2,2) ,/(l+b)

But since _ ul + N/_2 u2 is also a solution of equation (4-78), this is equiva-

lent to taking y = u 1/(1+b) where u is a general solution of equation (4-78).

Next consider the equation (ref. 14)

y" +p(x)y+My -3 =0 (4-80)

where p(x) is any function ofx and M is a constant. This is a special case of

equation (4-72) with w= constant = Co, Y= y, q(x) =-p(x), a= M/C 2.

Hence, 0(y)=y and, therefore, its inverse is O(0)=0. But this shows that

y=O ((-D1/2) =091/2= (Clll,2-t-C2u2-1-C311111,2) 1/2 (4-81)

where u_ and u2 are linearly independent solutions of

u" +p(x)u=O (4-82)

Let J denote the Wronskian of the solutions Ul and u2; that is,

J= u,u2 - u'lu2 (4-83)

Upon differentiating equation (4-83) with respect to x and using the fact that

u_ and u2 satisfy equation (4-82), we find that 42

42 Or see section 5.9.
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dJ= 0
dx

which shows that J= constant. Substituting the solution (4-81) into equation

(4-80), using equation (4-82), and using the fact that its Wronskian is constant,

we find that equation (4-81) is a solution of equation (4-80) if, and only if,

C2= 2 (-_-4-C1C2)

4.3 MISCELLANEOUS METHODS

4.3.1 Change of Variables

Frequently, a good choice of new dependent and independent variables

will convert an equation to a simpler and more easily analyzed form. Some pro-

cedures which-have proved helpful for this purpose are given in this section.

4.3.1.1 General transformation of linear equations.-The second-order

linear equation (4-3) is transformed by introducing a new dependent variable

v which is of the form

v=f(x)y (4-84)

and a new independent variable t which is of the form

t =g(x) (4-85)

into an equation which is also linear and of the second order.

The change of variable (4-84) transforms the linear homogeneous equation

y" +p(x)y'+ q(x)y= 0 (4-36)

into an equation

v" +p, (x)v' + q, (x)v = 0 (4-86)

of the same type. It is clear that equation (4-86) can be transformed back into
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the original equation (4-36) by a change of variable which is also of the form

(4-84). Any two equations which can be transformed into one another by a

change of variable of the type (4--84) are said to be equivalent. The new coeffi-

cients pl (x) and qt (x) of equation (4-86) are related to the original coefficients

p(x) and q(x) by

1, 1 2 1 , 1 2
q---_ p --'_ p = q, ---_ p, --'_ p,

Hence, we may say that the quantity

j --q-lp' _lp2 (4-87)

remains invariant under the transformation (4-84). It is therefore called the

invariant of equation (4-36). We have seen that any two equivalent equations

have the same invariant. It can also be shown that, conversely, any two equa-

tions with the same invariant are equivalent.

If the solution of one equation of the form (4-36) is known, it is possible

to find the solution of all equations which have the same invariant. Thus, when

a new equation is encountered, we can compare its invariant with those of

equations whose solutions are known. If we can find one which is the same,

we will have succeeded in solving the original equation. In particular, the ad-

joint equation (see section 4.1.6) of equation (4-36) has the same invariant J

as equation (4-36) and is therefore equivalent to it.

If the coeit_cient p (x) in equation (4-36) is identically equal to zero, we say

that the equation is in norma143form. In this case the invariant (4-87) is given by

J=q

In the general case the equation (4-36) with invariant (4-87) can always be

transformed into the normal equation

v" + Jv = 0 (4-88)

by a change of variable of the form (4-84). Then equation (4-88) is said to be the

*3Notice that in this case the meaning of term normal is different from that of section 1.4. The proper interpre-

tation of this term should always he clear from the context.
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normal form of equation (4-36). It is clear that any given equation has only one

normal form and that all equivalent equations have the same normal form.

The normal differential equation

d2y
_'_x2+ J(x)Y= 0

can always be transformed into the normal equation

d2v+
dt 2 J(t)v= 0

by changing both the dependent and independent variables by transformations

of the types (4-84) and (4-85), respectively, provided the nonlinear differential

equation

=(dt 2 1 3_x)4j(t) _t dt cl2t _2-_x ) J (x ) 2 dx 3 dx + 4 ( --d-_x2/

can be solved for the new independent variable t. When this is the case, the

function f in equation (4-84) which determines the new dependent variable is

f (x ) = d_x

A fuller discussion of this topic as well as proofs of the various assertions

made in this section can be found in Rainville (ref. 15, chapter 1).

4.3.1.2 Transformation to an equation with constant coefftcients.-We

have seen that the homogeneous Euler equation (section 4.1.3.2) can be trans-

formed by a change of independent variable into an equation with constant

coefficients (which we know how to solve). More generally, the linear homo-

geneous equation

y" +p(x)y' + q(x)y= 0 (4-36)

can be transformed into a linear equation with constant coefficients by a change

of independent variable if, and only if,
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_xx+ 2pq

q3/2 -- constant (4-89)

When condition (4-89) holds, the change in variable (4-85) is given by

t=c I N/-q(x)dx (4-90)

where c is any constant.

In order to prove this, it is only necessary to substitute the change in vari-

able (4-85) into equation (4-36) and obtain the transformed equation

a_2t dt

d2y .--d-_x2 + p -_x

\N/

dY_ 4_ g

\dx/

y=0

It is now easy to see that the coefficient of y in this equation will be constant

if, and only if, t is given by equation (4-90). Further, substituting (4-90) into

the coefficient of dy/dt, we find that this coefficient will also be constant if,

and only if, condition (4-89) is satisfied.

Thus, for example, for the homogeneous Euler equation, p(x)=po/x

and g(x)= qo/x 2. Hence, equation (4-89) is satisfied, and equation (4-90) for

the new independent variable becomes in this case

f q_/2t = c m dx = cq 1/2 In x
X

The change of variable (4-30) given in section 4.1.3.2 is a special case of this.

4.3.1.3 Interchanging of dependent and independent variables.-Differ-

entiating the identity

dx \dy/

with respect to x shows that

107

488-942 0 o 73 - 8



DIFFERENTIALEQUATIONS

d2y_ d2x(dx) -adx 2 dy 2 -dy

And when these relations are substituted into the general differential equation

(4-1), we obtain the equation

F ---_ , , y,x =0

in which x is the dependent variable and y is the independent variable. Some-

times this change of variable will result in an equation whose solution is

known or can be found.

4.3.1.4 Legendre transform.-The Legendre transform which consists

of introducing the new independent and dependent variables p and q, re-

spectively, defined by

_dy
P = xx (4-91)

q =---x-_x--y (4-92)

can be used to radically alter the form of a differential equation. It follows

from these relations, after differentiating equation (4-92), that

dq= xdp + pdx - dy dy=pdx

And when these equations are solved for x and y, we find that the inverse

transformation is given by

dq
X= pp (4-93)

dq
y= p _p -- q (4-94)

But it follows from equations (4-91) and (4-93) that
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d2y =

Hence, substituting equation (4-91) and equations (4-92) to

equation (4-1) yields the transformed differential equation

F dp2] 'P'P--_p-q'-'_p =0

(4-95)

(4-95) into

of a solution y of equation (4-1).

4.3.2 Equation Splitting

When equations which are split in some natural way into sums, quotients,

or products of terms, such as

_=f'(p)

or

f(y", y', y, x) -4-g(y", y', y, x) = 0

f(y",y',y,x)

g(y",y',y,x) =c

are encountered, it is sometimes possible to obtain a solution by putting

f(y', y', y,x) = h(x) =-g(y", y', y,x)

for equations of the first type and
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f(y", y', y, x) = ch (x).

g(y', y', y, x) = h (x)

for equations of the second type. If h(x) can be chosen so that a common

solution to the pair of equations can be found, this solution will also be a

solution of the original equation.

4.3.3 Tables of Differential Equations and Solutions

Two valuable catalogs of solutions to differential equations can be found in

the volumes by Murphy (ref. 16) and Kamke (ref. 17). Murphy lists over 2000

solved equations which are classified according to order and degree; Kamke

gives about 1500 equations along with their solutions and references to the
literature.
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CHAPTER5

ReviewofComplexVariables

A general procedure for solving second-order linear equations will be

given in chapter 6. But this procedure involves the use of power series, and

the discussion of power series becomes much simpler when it is carried out

in its natural setting-the complex plane. In order to take advantage of this

fact we shall extend the definition of a differential equation given in chapter 1

to include the case where the variables which occur in the equation are complex.

Thus, by considering a more general situation we are actually able to simplify

the treatment. Another reason for making this extension is that it allows us to

see how solutions are connected across the singular points of the equation.

In this chapter, those concepts from the theory of functions of a complex

variable which are needed for this purpose will be reviewed. The treatment

is essentially descriptive; and rigorous proofs of the various assertions are,

for the most part, omitted. For a more detailed treatment of the topics covered

herein (including the omitted proofs), as well as a more complete coverage of

the vast field of complex variables, the reader is referred to the many excellent

texts 44 which are devoted entirely to this subject.

5.1 COMPLEX VARIABLES

Let x and y be two independent real variables and, as is the usual practice,

put i = _ 1. Then z = x + iy is a complex variable. It is frequently convenient

to think of the values ofz as points in a plane, called the complex plane, whose

Cartesian coordinates are x and y.

_A good elementary treatment is given by Churchill (ref. 18). A more advanced and theoretical treatment is

given by Ahlfors (ref. 19), while the text by Carrier, Krook, and Pearson (ref. 20) emphasizes advanced applications.
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y

FIGURE 5--1.- Polar representation of complex number z.

Instead of using the Cartesian coordinates x and y, we can also use the

polar coordinates r= xV'_-+--y e and 0= tan -1 y/x to locate points in this plane.

(The relation between the polar and Cartesian coordinates is illustrated in

fig. 5-1.) Then

z = x + iy= r cos 0 + ir sin 0

And upon using Euler's formula, we obtain the polar representation

z = r (cos 0+ i sin 0) = re i°

of the complex number z. Notice that for n = 0, +-1, ___2, . .

e iz"'_= cos 2nTr+ i sin 2nrr= 1

Hence,

Z _ 1-ei8= Fei_ei2n_____ rei(8+2n_)

The definitions of a domain and a neighborhood have been given in

section 1.1 for a general n-dimensional space. We shall continue to use these

definitions in the two-dimensional complex plane.
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The complex conjugate of the variable z is denoted by z* and defined by

z*=x-iy.

The absolute value or modulus of the complex variable z is defined to be

the length of the vector joining the origin with the point z in the complex

plane and is denoted by Izl.Therefore, 45

Izl = X/x2+y2= zVz-_z*

5.2 ANALYTIC FUNCTIONS OF COMPLEX VARIABLE

Let u(x, y) and v(x, y) be any two real-valued functions 4s (of the variables

x and y) which are defined in some region of the complex plane. Then w = u + iv

is a complex-valued function of x and y. Since w associates a complex number

with each point z=x+ iy of some region of the complex plane, we say that

w is a function of the complex variable z.

We shall consider only a particular class of functions of a complex variable

called analytic or holomorphic functions. In order to define this class of func-

tions we first introduce the concept of a complex derivative. To this end, let

w = u -4- iv be a function of the complex variable z and suppose that x and y are

changed by the amounts Ax and Ay, respectively. Then w changes by an amount

Aw = Au + i Av. Now, by analogy with the definitions of the derivative of a

real-valued function of a real variable, we define dw/dz, the derivative 4r of w

with respect to z at t_ae point z, to be the limit

d-Ew= lim Au + i Av = lim Aw
dz _-.o Ax+iAy _-.o Az

provided that this limit not only exists but that it is independent of the manner

in which Ax and Ay approach zero. When Ax and Ay approach zero in some

prescribed manner, Az approaches zero along some path in the complex plane,

45 Notice that Izl is equal to the polar coordinate r.

4e Recall that according to the convention adopted in section 1.1 we assume that all functions are single valued

unless explicitly stated otherwise.

47We shall frequently write w'(z) or w' in place of dw/dz and wt"_(z) or u_nl in place of d"w/dz n for n = 1, 2....
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z+Az

IX

FIGURE 5-2.--Typical path along which Az can approach zero.

as indicated schematically in figure 5-2. But the definition implies that, if

w is to have a derivative at the point z, then Aw/Az must approach the same

limit for every such path along which Az approaches zero. Although this

:requirement imposed on the complex derivative may seem unimportant, its

implications are enormous. In fact, by allowing Az to approach zero along

various paths, it can be readily shown (ref. 18, p. 34) that, if u and v are con-

tinuously differentiable 4s a necessary and sufficient condition for the ex-

istence of the derivative dw/dz at the point z0 is that u and v satisfy the two

Cauchy-Riemann equations

Ou Ov Ou Ov
--= and --=----
Ox Oy Oy Ox

at this point. This shows that much greater restrictions are imposed on those

complex functions which possess complex derivatives in the sense of the

definition given above than are imposed on the real functions which possess

ordinary real derivatives. However, since the complex derivative is formally

the same as the real derivative, the usual rules for differentiating sums, prod-

ucts, quotients, etc., still apply (ref. 18, p. 31).

A function w(z) of the complex variable z is said to be analytic 49 or holomoro

pi_ic in a domain D if it possesses a derivative at every point of D. Frequently,

4sThis means that the partial derivatives Ou/Ox, Ou/Oy, Ov/Ox, and Ov/Oy exist and are continuous.

_* I he terms regular and monogenic are also used.

114



REVIEW OF COMPLEX VARIABLES

when it is of no consequence in the discussion, the reference to the domain D is

omitted and we simply say that the function w(z) is analytic. A function is

said to be analytic at a point zo if it is analytic in some neighborhood of this

point.

Notice that the identity function

w=z=x+iy

is analytic at every point since the Cauchy-Riemann equations (with u = x and

v = y) are always satisfied. However, the complex conjugate of this function

w= z*= x-- iy

is not analytic at any point since in this case Ou/Ox = 1 and Ov/Oy =- 1 and

therefore the Cauchy-Riemann equations are never satisfied.

The real and imaginary parts of the function

w
1 1 z* x -- iy

z x+iy zz* x 2+y2

are

x --y
u - and v -

X 2 + y2 X 2 + y2

respectively. And upon taking the partial derivatives of these functions we see

that the Cauchy-Riemann equations are satisfied at every point except z=0,

where the partial derivatives fail to exist. Hence, w = 1/z is analytic at every

point except z = 0.

It is a remarkable fact (see ref. 18, p. 122) that any function w(z) which is

analytic at a point z0 possesses derivatives of all orders at this point. And these

derivatives are themselves analytic functions at this point. It is easy to see that

the sum and product of any two analytic functions are analytic within any

domain in which both functions are analytic. Usually, any function which is

obtained from a real algebraic, elementary-transcendental function (trigono-

metric, exponential, logarithmic, etc.) or a common higher-transcendental func-

tion (Bessel function, hypergeometric function, etc.) by replacing the real

variable x by the complex variable z=x+ iy is an analytic function within some

domain.
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5.3 CONFORMAL MAPPINGS°

According to the definition given in section 5.2, a complex function

w = u+iv of the complex variable z=x-4 -iy associates a pair of numbers

(u, v) with each point (x, y) of some region of the complex z-plane. We can

interpret these numbers as coordinates of a point in a complex w-plane. Thus,

we may think of the function w(z) as a transformation or a mapping of some

region in the z-plane into some region in the w-plane. More specifically, we

can think of an analytic function w(z) which is defined on a domain D in the

z-plane as a mapping of D onto a region R in the w-plane, as shown schematically

in figure 5-3. In order to determine the properties of an analytic function w(z)

it is frequently helpful to study the manner in which this function transforms

various points, curves, or domains in the z-plane into corresponding points,

curves, or regions in the w-plane.

FIGURE 5-3.-- Mapping of D onto R by w(z).

Thus, the transformation w= 1/z associates a single point in the w-plane

with each point in the z-plane except the origin z= 0. It maps all those points

lying outside the circle with radius R and center at the origin in the z-plane

into the interior of the circle with radius 1/R and center at the origin in the

w-plane. Although there is no point of the z-plane which maps into the point

w= 0, we can, by choosing R sufficiently large, make the points outside this

50 A comprehensive treatment of this subject can be found in Nehari (ref. 21).
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circle map into a circle of arbitrary small radius about w= 0. However, it is

frequently convenient to "complete" the z-plane by adding a fictitious point

z = _ which maps into the point w = 0 under the mapping w = 1/z. Thus, when

we speak of the behavior of an equation or a function at the point z--_, we

actually mean the behavior at the point w = 0 of the transformed equation or

function obtained by putting z = 1/w. When it is necessary to distinguish

between the point z = o¢ and the other points of the complex plane, the latter

are said to be finite points. When the complex plane includes the point z= _,

it is called the extended plane; and when z = _ is excluded, it is called the

finite plane.

Let w(z) be analytic in a domain D and let z0 be any point of D at which

dw/dz # O. Then w(z) transforms any two smooth curves passing through z0

in such a way that their image curves intersect at the point w0 = w(zo) with

the same angle (in both magnitude and sense of rotation) as the original curves

in the z-plane (ref. 18, p. 174). Thus, the mapping "preserves angles," and we

say that w(z) is a conformal mapping at all points where dw/dz # O.

A mapping which is particularly useful for the treatment of certain types

of linear differential equations is the linear fractional transform

az+ b
w- (5-1)

cz+ d

Notice that, if ad-bc=O, this transformation reduces to w= constant. In

any other case, it transforms each point in the extended z-plane into a point

in the extended w-plane in such a way that no two points in the z-plane map into

the same point in the w-plane. In addition, there is a point in the z-plane which

maps into each point in the w-plane. For this reason, we say that a linear frac-

tional transformation with ad- bc # 0 is nonsingular.

If we consider straight lines and points as being degenerate circles (i.e.,

circles having infinite or zero radii), we can say that the linear fractional

transformation always maps circles into circles.

Performing two nonsingular linear fractional transformations in suc-

cession is equivalent to performing a single nonsingular linear fractional

transformation. In fact, any nonsingular linear fractional transformation can

be performed by carrying out not more than four successive transformations

each of which has one of the three elementary forms

w = az (rotation and stretching) (5-2)
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w =/3 + z (translation) (5-3)

1
w = - (inversion) (5-4)

Z

In order to prove this, first suppose that c # 0. Then equation (5-1) can

be written as

(5-5)

Now transform the z-plane into the tl-plane by the transformation

Then transform the tl-plane into the t2-plane by

1
t2 =--

tl

and the t2-plane into the t3-plane by

(, °J)t3 = C

Finally, transform the t3-plane into the w-plane by

w=a+ t3
c

Upon combining these successive transformations we obtain equation (5-5)

and therefore equation (5-1). This proves the assertion for the case where

c # 0. When c = 0, equation (5-1) reduces to
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which is easily seen to be equivalent to the succession of transforms

a b

tl=[tz and w=t_+_t

If the transformation (5-1) is to be nonsingular, at least two of the con-

stants a, b, c, and d must be nonzero. By dividing through by one of these,

it is easy to see that equation (5-1) in fact contains only three arbitrary con-

stants. It is therefore not surprising that these constants can always be chosen

so that the linear fractional transformation maps any three given points in the

z-plane, say z_, z2, and z3, into any three given points, say wl, w2, and w3,in

the w-plane. Thus, for example, the linear fractional transformation which

takes z = z_ into w = 0, z = z2 into w = 1, and z = z3 into w-- _ is

Z2--Z3 Z--Z1
W--

Z2--Z1Z_Z3

5.4 ISOLATED SINGULAR POINTS OF ANALYTIC FUNCTIONS

If a function w(z) is analytic at every point in some neighborhood of a

point z0 except at the point z0 itself, 5_ then z0 is called an isolated singular point

or an isolated singularity of the function w (z). Thus, the function

z+2

w(zl=z(z+ 1) 2 (5-6)

has isolated singularities at the points z = 0 and z = -1.

An isolated singular point z0 of the function w(z) is called a removable

singularity if the limit of w(z) as z--_ z0 is equal to some finite number. Let k be

a positive integer. An isolated singular point z0 of the function w(z) is said to be

a pole of order k if the limit as z-->zo of the quantity (z-zo)kw(z) is equal to

some finite nonzero number. A pole of order one is called a simple pole.

5_ The function need not even be defined at the point zo.
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Thus, for example, the function given by equation (5-6) has a simple pole

at z = 0 and has a pole of order two at z = - 1.

Because of the way analytic functions arise in practice, it turns out that we

sometimes arrive at a function w(z) which is not defined at a point z0 but is

defined and analytic at every point of a neighborhood of z0. The point zo is

thus an isolated singular point of w(z). But if this point is also a removable

singularity, the function can be made analytic at z0 simply by assigning a suit-

able value to w(z) at this point (ref. 18, p. 158). For example, since division by

zero is undefined, the function w(z) given in equation (5-6) is undefined at

z = 0. Thus, 0 × w(0) is also undefined. Hence, the function _(z) defined by

- zw(z)

is not defined at the point z = 0. However, upon defining _(0) by

¢(0) = lim _(z) = 2
z---_ 0

we obtain a function which is analytic at z ----0.

It is easy to see that, if w(z) has a pole of order k at Zo, the function

¢(z) - (z-zo) w(z)

has a removable singularity at z0 and is therefore "essentially" analytic at this

point. 52 We shall sometimes say that an analytic function has a pole of order

zero at the point z0 if z0 is a removable singularity of this function.

Any isolated singular point of an analytic function which is not a pole or

a removable singularity is called an essential singularity. For example, the

function sin(l/z) has an essential singularity at z = 0.

There are some important differences between poles and essential singu-

larities. For example, if w(z) has a pole at z0, the function 1/w(z) is analytic 53

52For the purposes of this book we can assume that any analytic function which is encountered has already

been defined at its removable singularities in such a way that it is analytic at these points.

s3 In fact, it is equal to zero at zo (see preceding footnote).
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at z0; but if w(z) has an essential singularity at z0, so does 1/w(z) (ref. 22, p.

110). A pole, then, is a point where a function w(z) is not analytic only because

its modulus Iw(z) I becomes infinitely large at this point and for no other reason.

A function which is analytic at every finite point of the complex plane is

called an entire function. And Liouville's theorem (ref. 18, p. 125) states that

any entire function which is also analytic at infinity (see section 5.3) must, in

fact, be equal to a constant.

A polynomial is a function of the form ao+alz + . . + a_ = where

a0, . •., an are complex constants. It is an entire function, and it has a pole

of order n at infinity. A rational function is the ratio of two polynomials (which

may be chosen to have no linear factors in common). It is therefore a function

of the form

w(z) a°+alz+a2z2+ " " " +a_n
=bo+blz+.b2z2 + . +b,,_z m an#O;bm#O (5-7)

and is analytic everywhere in the finite plane except at those points where its

denominator is equal to zero. These points are poles of w(z). If m t> n, then

w(z) is analytic at the point z = oo; otherwise it has a pole of order n-m at

this point.

A function which is analytic at every point of a domain D except at those

points of D where it has poles is said to be meromorphic in D. For example,

the rational function (5-7) is meromorphic in the entire finite plane. In fact,

any function which is meromorphic in the entire finite plane and has a pole at

infinity is necessarily a rational function (ref. 20, p. 60). A function which is

meromorphic in the entire finite plane can have at most a finite number of

poles in any domain D of finite size. However, it may have infinitely many

poles ifD is infinitely large. 54

In view of Euler's formula (see section 5.1) it is natural to define the func-

tion e z by the formula

eZ=eX+iy=e x cos y+ ie _ siny

Then ez is an entire function and has an essential singularity at z= oo. We can

now define the functions sin z and cos z by the formulas

._4For example, D could be the entire plane or the upper half plane.
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eiZ -- e-iZ eiZ -_- e-iZ
sin z -- and cos z =

2i 2

which extend in a natural way the definitions given to these functions when

the variables are real. They are also entire functions with essential singularities

at z= _. On the other hand, the function 1/sin z is meromorphic in the entire

finite plane; and its poles are located at the points z=nTr for n=0, __+1, __+2,

etc. It also has an essential singularity at z=_.

5.5 POWER SERIES

A power series about a point zo is an infinite series of the form

a,(z-zo)" (5-8)
rt=0

in which the coefficients a, can be any complex numbers. This series certainly

converges at the point z0, which may be the only point at which it actually

does converge. Or the opposite extreme could occur and the series might

converge at every point of the finite plane. In all other cases the series will

converge at every point within a circle of radius R and center at z0, called the

circle of convergence of the series, and will diverge at every point which lies

outside this circle. Thus (ref. 19), there exists a number R lying in the range

0 _< R _< oo called the radius of convergence of the series such that the series

(5-8) converges at all points z which satisfy the inequality 55 Iz--zol < R and

diverges at all points z which satisfy the inequality 5e Iz-zol > R. The question

of whether the series is convergent for the points which satisfy the equality

Iz-zol=R (i.e., points on the circle of convergence) is more subtle but un-

important for our purposes.

A power series with a nonzero radius of convergence R converges to an

analytic function and can be differentiated term by term (i.e., the order of

summation and differentiation can be interchanged) at every point within its

circle of convergence. Thus, there exists a function w(z) which is analytic at

every point within the circle Iz-zol < R such that

55 The series is, in fact, absolutely convergent at these points. This means that the series still converges when

each of its terms is replaced by its absolute value. See ref. 19 for more details.

This result was first established by Abel.
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w(z)=.=oa.(z--Zo)" 1dw(z)
_z' = _ nan(z--z°)'-1

n=l

for ]z--zo] < R

It can also be shown (ref. 19) that, when the series (5-8_ has a nonzero

radius of convergence R, there exists a positive constant M # w such that for

any number 0 < r < R the coefficients of the series satisfy the Cauchy estimates

for n=0, 1,2, . . .

This result will be used in the discussion of the solutions of differential equa-

tions in the next chapter.

Now suppose that w(z) is analytic in the domain D and that zo is any

point of D. Then the power series

1
_ w¢"_(zo) (z--zo)" (5-9)

n=0

(where w_°_(z0) = w(z) ) converges to w(z) at every point z within the largest

circle centered at zo lying entirely within D (ref. 18, p. 129). This series is called

a Taylor series expansion of w(z) about zo. Its radius of convergence is at least

equal to the shortest distance between zo and the boundary of D. It may be

larger than this but we have no guarantee that the series will converge to w(z)

at points which lie outside of D. The series representation (5-9) is unique in

the sense that if £ b,(z-zo) _ is any power series which converges to w(z)
n=0

within any circle about zo, then necessarily (ref. 20, p. 49)

b, =-_. w _ (zo) for n=0, 1,2, . .

Next, suppose that w(z) is analytic at every point of a domain D except

for a certain number of isolated singular points and let zo be a point of D at

which w(z) is analytic. Then the circle of convergence of the Taylor series
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singular points of w(z)

Bounda_ /__ .,_-Ci rcle of convergence

of D-'-

(a)

,,-Maximum size
/ of circle of

convergence
Boun
of D

(b)

(a) Circle of convergence does not intersect boundary of D.

(b) Maximum circle of convergence intersects boundary of D.

FIGURE 5--4.- Circle of convergence of a Taylor series.

of w(z) about z0 passes through the nearest isolated singular point of w(z)

if it does not intersect the boundary of D. In this latter case we can only assert

that the radius of convergence does not exceed the distance between z0 and the

nearest of the isolated singularities of w(z) within D. These results are illus-

trated in figure 5--4. Thus, in particular, if the function w(z) is analytic at every

finite point of the complex plane except at a certain number of isolated singu-

lar points, then the circle of convergence of its Taylor series expansion about

any point z0 where w(z) is analytic always passes through the nearest isolated

singular point to z0.

For example, we have seen in section 5.2 that w(z)= ez is an entire

function. It is easy to see that the nth derivative of this function is
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w(n)(z) = ez for n= O, 1,2,...

Hence, the Taylor series expansion of ez about z = 0 is

1ez= -_.v.z" (5-10)
rt=0

And this series converges in the entire finite plane.

We have also shown in section 5.2 that the function w(z) = 1/z is analytic

at every point of the complex plane except the origin z = 0. The nth derivative

of this function is

w(n)(z ) __ (-- 1)nn!
zn+l

Hence, its Taylor series expansion about the point z = 1 is

(- 1).(z- 1)-
Z

n=0

It is easy to verify that the radius of convergence of this series is equal to 1

and that the circle of convergence passes through the isolated singular point

z = 0. Upon replacing 1 - z by z in this series we obtain the geometric series

a _ z- (5-11)
1--Z

which converges within the unit circle Izl = 1. This circle passes through the

isolated singular point z = 1 of the function (1 -- z) -1.

We shall frequently find it necessary to add and multiply two power

series. The sum of two power series about the same point can be obtained

by adding the two series term by term. The resulting series will converge

within the smaller of the two circles of convergence of the original series

(ref. 23, p. 123). Now let ___ c,, and .__ d, be any two absolutely convergent

series. Any expression for the product (£ c,) (£ d,,) must certainly include
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all terms of the type cidj. But all terms of this type must belong to the array

codo + cod1 + cod2 -4-... -4- cod, +. • •

+ Cl do -4- Cldl -4-did2 +. • ".+ cld, +...

+ c2do + c2dl + c2d2 + . . . + c2d, + . . .

+ cmdoA-Cmd1-4- cmd2-4-. • • -t- cmd_+. • •

-_ o o .

And the series which is formed by grouping together the terms along the di-

agonals of this array and summing the result over all diagonals is called the

Cauchy product of the two series. Thus, the general term in the Cauchy

product is
n

an--- cndo-4- Cn_l dl -4- Cn-2d2 A-- . . . -4- codn _-- _=o Cn-kdk _-- _=o ckdn-k

and the Cauchy product is the series _ a_. Cauchy's theorem (ref. 18, p. 147)
n=0

states that the Cauchy product _, an is absolutely convergent and that
n=O

Cn dn = an = Ckdn-k

= = = n=O

The Cauchy product is particularly convenient to use when multiplying

power series. For, in this case, we get

an(z -- zo) _ bn(z -- ZO) n _ ak(z -- Zo)kbn-k(Z -- Zo) n-k

= = n=0

= (Z -- ZO)n akbn-k

n=0
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which converges within the smaller circle of convergence of the two original.
series.

For example, let us use these ideas to find the power series expansion of

the function 1�[(a-z) (b-z)], where a and b are arbitrary complex constants.

To this end notice that the geometric expansion (5-11) implies that

1 __ a_nz,, and 1 -_b-"z"
z z

n=0 1 -- -- n=0

a b

Hence, upon forming the Cauchy product we obtain

1 1 z"
(a -- z) (b - z) ab ,=0

But since

we find that

a b

1

(a - z) (b - z)

1 o¢

- _ [a -('+') - b -(n+') ]z"
b -- a n=O

Next, in order to find the Taylor series expansion of the function cos z/(1 + z 2)

about the point z = 0, notice that by changing variables in the geometric expan-

sion (5-11), we obtain the expansion

1 _] 1).Z2n1+Z_--2 = (--
rt=O

and that by using the expansion (5-9) and the definition of cos z given in section

5.4, we obtain the expansion
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Z2 ncosz= (-- 1)" (2n) v
rt=0

Then, upon taking the Cauchy product of these two series, we obtain

COSZ __ _ ) nZ2n n ]l+z2 (-1 _ (2k)'
n=O k=O "

We have seen that a power series (with positive exponents) represents

(converges to) an analytic function within a circle. Similarly, the series (ref.

18, p. 134)

a,(z-zo)" (5-12)
n:--o¢

containing both positive and negative exponents, converges to an analytic

function in an annular region 57 lying between two concentric circles centered _

at zo and of radii R_ and R2 with R_ < R2 (i.e., at all points z for which

Rl< Iz--zol<R2). Conversely, any function w(z)which is analytic in an

annular region RI < Iz - z0[ < Rz can always be represented by a series of

the form (5-12) at every point of this region. This expansion is called a Laurent

series. An important special case occurs when the function w(z) has an isolated

singularity at the point zo and is analytic at every other point within the circle

[z -- z0] = R. In this case the series

w(z)= _ a,(z-zo) _

converges to w(z) at every point z of the punctured circular region

0< [z-zol <R bounded by the circle Iz-zol=R and the point z0. Then the

isolated singularity zo is a pole of order k of the function w(z) if, and only if,

a-k # 0 and an = 0 for all n < - k. Hence, if z0 is an essential singularity,

infinitely many negative powers of z -- z0 will occur in the series.

For example, we can use the geometric series (5-11) to obtain the expansion

57 Provided it converges at all.
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-- 1 _

z-- z 1--- .=o n=l n=-_¢
z

of the function (z - 1)-' about the point z = _. This series converges at all

points which lie outside the circle Izl = 1. And since the series

3
- X' 3-"z"

3--z n=o_

converges within the circle Iz] = 3, we conclude that the series

2z _ 1 3 _
(z-1)(3-z) z--1 + 3-z _ a.z"

with

{_ for n =- 1,-2, . . .a,= -, forn=0, l,2,...

converges in the annular region 1 < Iz] < 3.

5.6 COMPLEX INTEGRATION

Let w(z) be analytic in a domain D. Then the integral Ir w(z)dz of w(z)

along a curve or path F which lies entirely within D is defined in terms of two

real line integrals along F by

fv w(z)dz=fr (udx--vdy) + i fv (udy + vdx) (5-13)

It is easy to verify from this definition that the usual rules of integration

still apply. Thus, in particular, if a and/3 are complex constants and w,(z)

and w2(z) are analytic functions
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fF [OtWl(Z)-4-/_W2(z)]dz _fFw,(z)dz+_ frw2(z)dz

and if the direction of integration along F is reversed, the integral is multiplied

by - 1.

For example, the integral of the function w(z)=z along the line yo = con-

stant, from the point (0, y0) to the point (x0, y0), is

Xo (Zo 1 2 ]
f zdz=f xdx+ijo yodx=_2+iy°xo=-2(xo+iy°) --2(iY°)2
JF JO

In order to integrate w(z)=z along a circular path centered at z=0, it is best

to use polar notation. Thus, let the radius of the circle be R. Then on this circle

z=Re i° and dz= iRe i° dO. Hence,

fr=RZdz=ifo2_:R2e2i°dO=O

More generally, it can be shown (ref. 18, p. 11]) that, if C is any closed curve

within D and if w(z) is analytic at every point in the interior of C, then

cw(z)dz=O

Therefore, if F1 and F2 are any two curves in D which begin at the point zl and

end at the point z2 (fig. 5-5), then

fr, w(z)dz= fr2w(z)dz

provided w(z) is analytic within the domain enclosed by these curves.

Because of this fact the exact path along which the integration is carried

out is frequently unimportant; and when this is the case, we write

f; w(z)dz in place of w(z)dz.
1

The function w(z) = llz has a singular point at the origin; and its integral

alongthe eirele of radius R eentered at the origin is
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(a) (b)

(a) Line integrals along F1

and F2 not necessarily

equal.

(b) Line integrals equal along

F_ and F2.

FIGURE 5-5.- Paths for line integral. (Arrows indicate direction of integration.)

fof=H 1 dz= i dO= 2_i

If the function w(z) is an analytic function of z in D, the function F(z)de-

fined by

z
F(z) = w(z)dz

o

is also an analytic function ofz inD and (ref. 18, p. 114)

Hence,

dF(z) -w(z)

f;F(z)--F(zo)= F'(z)dz
o

This shows that just as in the case of real variables, integration and differen-

tiation are inverse processes. For example, in order to evaluate the integral

• zndz notice that, for n #--1,
J Zo
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Hence,

] dz n+!

zrt--

n+l dz

f z 1 f z dzn+l Zn+l Z'd+1
zndz = __

o n+l dz dzo n+l n+l

It can also be shown (ref. 18, p. 141) that any convergent power series can

be integrated term by term and the resulting series will have the same circle

of convergence as the original series. In fact, it can be shown that the product

of any convergent power series about a point z0 with a function of the form

(z-zo) x, where h is a complex constant, can also be integrated term by

term.

5.7 ANALYTIC CONTINUATION

5.7.1 Definition

First, suppose that w, (z) and w_(z) are both analytic in some common

domain D. It can be shown (ref. 18, p. 259) that if wl_z)= w2(z) at all points of

some subdomain of D or even at all points of some curve which lies entirely within

D, then w_(z) and w_(z) are equal at every point of D. This assertion is known

as the fundamental theorem of analytic continuation. It means that there is

only one analytic function in a domain D which takes on any given set of values

which are prescribed at every point of a subdomain of D or even at every point

of some curve in D. For example, if the function w(z) is analytic in a domain D

and is equal to zero at every point of a subdomain of D or at every point of a

curve lying within D, then w(z) is zero at every point of D.

We have seen in section 5.5 that the analytic function

1--Z
(5-14)

which is defined and analytic at every point of the complex plane except

z = 1 can be expanded in the Taylor series

zn (5-15)
/l=0
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FIGURE 5--6.-- Domains for direct analytic contination; Dc is the common part of both domains

D1 and D2.

which converges only within the unit circle. Thus, the function (5-15) is de-

fined only within the unit circle, where it is equal to the function (5-14),

which, however, is defined in a much larger region. The function (5-14) can

therefore be considered as an extension of the function (5-15) from the unit

circle to the entire complex plane with the point z = 1 excluded. Indeed,

whenever an analytic function is defined by some expression (such as a power

series) in some domain D which is not the whole complex plane, it is natural

to ask if this function can be extended to a larger domain.

First, consider the function wl(z) defined on the domain D1 and let D2

be another domain, part of which coincides with Dt as shown in figure 5-6.

It can be shown that the common region Dc, which is part of both domains,

is itself a domain 5s and hence is a subdomain of both the domain D_ and the

domain 02. Now suppose that there exists a function w2 which is analytic

in the domain D2 and which is equal to w_ (z) at every point z of the common

domain Dc. Of course, the function w2(z) may not exist. However, if it does

exist, it is called the direct analytic continuation of the function Wl to the
domain D2.

There can be at most one direct analytic continuation of a function to any

given domain. For if _2 is another direct analytic continuation of w_ to D2, then

w2 and _2 are both analytic in 02 and are equal to one another in the subdomain

De. Hence, the fundamental theorem shows that w2 and _2 are equal at every

point of D2. And this of course means that _2 and w2 are the same function.

5SSee, e.g., ref. 8, ch. 1.The domains D1 and D2 are said to intersect; and the common domain De, called the

intersection of DI and Dz, is denoted by Dz N/)2.
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FIGURE 5--7.- Chain of domains for analytic continuation.

Let D be the domain which consists of all points which belong either to

the domain D_ or the domain D2, or both. 59 Then since the analytic functions

w_ (z) and w2 (z) are equal at all points where they are both defined, we can

define a new analytic function _v(z) on the domain/9 by the relation

= l wl(z) for z in D1_v(z)

/ w2 (z) for z in D2

It is clear that the analytic function w(z) is an extension of the analytic func-

tion wl (z) from the domain DI to the larger domain D.

The process described above does not have to terminate with the function

w2(z). It may, for example, be possible to find a direct analytic continuation

w3(z) of the function w2(z) to a domain D3, and so on. Proceeding in this

a_anner we obtain a chain of domains D2, D3, . .. such as that shown in figure

5-7 and a collection of analytic functions w2 (z), w3(z), . . . defined on these

domains. Each of these functions is said to be an analytic continuation of

the function w_(z), and the procedure itself is called analytic continuation.

We say that w_ (z) is analytically continued along a simple 6o curve F which ex-

tends from D_ to some point P if F is completely covered by a chain of domains

D2, D3, . . . (as shown in fig. 5-8) along which w_ (z) can be analytically con-

tinued in the manner described above.

59It is shown in various books on analysis that this extended region is indeed a domain. It is called the union of

the domains D_ and D2 and is denoted by D_ O D2, e.g., see ref. 8, ch. 1.

soRoughly, this means that F is smooth and does not cross itself nor have any other pathological behavior.
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FIGURE 5--8.- Analytic continuation along a curve.

The collection of functions generated by the process of analytic continua-

tion can be used, as in the case of direct analytic continuations, to define a

new analytic function on the larger domain which includes all the domains

on which the analytic continuations are defined. If, in addition, the function

wl (z) is analytically continued along a curve F, the values of this extended

function on F itself will be the same no matter which specific collection of

domains D2, D3,... is used to construct it.

5.7.2 Specific Method

In order to make these ideas more concrete we shall consider a specific

process which can be used, at least in theory, to obtain an analytic continua-

tion of any given function. Thus, suppose that the analytic function wl (z) is

defined by some expression in the domain D_. For example, it may be defined

by a Taylor series

w_(z) = _, a,,(z -- zl)" (5-16)
n=0

in which case the domain DI will be the interior of a circle of radius R_ centered

at the point z_. We suppose that R_ is finite. Choose a point z2 in the domain D_.

Since an analytic function is infinitely differentiable, we can calculate the

sequence of derivatives wt")(z2) for n=0, 1, 2, . . from the given expression

for wl (z) in the domain D_. For example, when the function w_ (z) is given by

the Taylor series (5-16), w_")(z2) can be obtained by differentiating equation

(5-15), term by term, n times and evaluating the result at z_. Then as indicated

in section 5.5 the Taylor series
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W2(Z) : _ an(x--z2) n

/1=0

with

bn W_n)(z2)
n!

for n=0, 1,2, . . .

will converge to an analytic function in a circle of nonzero radius centered at

z2. And this function will be equal to w, (z) at every point which is inside both

this circle and the domain D,. Of course, the circle of convergence of w2(z)

may not extend beyond the domain D, (as shown in fig. 5-9(a)). If this occurs,

Circle of

of w2(z)

(a)

convergence

_2

(b)

,-Circle of convergence

of w2(z)

(a) Circle of convergence of w2(z) does not extend beyond D,.

(b) Circle of convergence of w.,(z) extends beyond D,.

FIGURE 5--9.--Analytic continuation by power series.
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we can choose a new point z2 and repeat the process. However, if the circle

of convergence of w2(z) does extend beyond D1 (as shown in fig. 5-9(b)),

then w2(z) will be an analytic continuation of w_(z). The process can now be

repeated by choosing a point z3 which lies within the circle of convergence of

w2(z), proceeding to obtain a new Taylor series about this point, and so on.

It can be shown that any analytic continuation of a given function, no

matter how it has been obtained, can also be found by using the method of

power series just described. It is easy to verify from this that the analytic

continuation of the derivative of an analytic function has the same value at

any given point as the derivative of the analytic continuation at that point,

provided they are both carried out along the same curve. This means that the

order of differentiation and analytic continuation can be interchanged.

5.7.3 Singular Points

Let w(z) be analytic at all points of a domain D except for a certain

number of isolated singular points. Suppose, in addition, that w(z) is analytic

on a subdomain D1 of D and that wl(z) is the restriction 61 of w(z) to DI. Then

Wl(Z) is analytic on D1 and can be analytically continued to any other sub-

domain of D which does not contain singular points of w(z). As long as the

analytic continuation of w_(z) is carried out along a path which lies entirely

within D, the value of this analytic continuation at any point of D will be equal

to the value of w(z) at that point. However, since the circle of convergence of

a power-series expansion of an analytic function will pass through its nearest

isolated singular point (provided that point is nearer than the boundary of the
domain), it can be seen by using the method of power series that the function

wl (z) cannot be analytically continued along any curve which passes through

an isolated singular point of w(z). (These ideas are illustrated in fig. 5-10.)

More generally, let w_(z) be analytic on some domain DI. If this function

cannot be analytically continued along any simple curve which crosses the

boundary of D_ at the point z0, we say that the point z0 is a singular point of

the function wl(z). And the preceding remarks show that this definition is

consistent with the definition of an isolated singular point given in section 5.4.

Let _ an (z- zo) n be a power series whose radius of convergence is not
n=0

61 That is, w_(z) is a function which is defined only on D_ and takes on the same values at each point of D_ as the

function w(z).
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X Isolated singular points

Analytic continuation
of Wl(Z) along this
path is equal to w(z)_, //

/-Analytic continuation
/ cannot be carried out

past this point

FIGURE 5--10. -- Illustration of analytic continuation of a restriction of an analytic function.

/-Enlarged circle C
w (z)--,.. _- _,/ obtained by analytic

1 ___ "_continuation of w(z)

#

LCircle of convergence
of original series

FIGURE 5-11.--Analytic continuation past a circle of convergence.
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equal to zero or infinity. We have seen that this series converges to an analytic

function w(z) everywhere within its circle of convergence and diverges outside

this circle. We shall now show that this circle always passes through a singular

point 62 of w(z). In order to obtain a contradiction, suppose that there were no

singularities of w(z) on the circle of convergence. Then it would be possible to

analytically continue w(z) a finite distance outside this circle everywhere

around its circumference (as shown in fig. 5-11). These analytic continuations

could then be used to construct an analytic function wl(z) which is an ex-

tension of w(z) to a larger circle C which is also centered at x0. Now it is shown

in section 5.5 that the circle of convergence of the Taylor series expansion

of wl (z) about zo cannot be smaller than C. But it is also shown in that section

that this extended function wl(z) must have the same Taylor series expansion

about z0 as w(z). However, this is impossible since (by hypothesis) this latter

series diverges outside of the smaller circle. Hence, we must conclude that

there is a singular point of w(z) on its circle of convergence.

Starting with a given analytic function w_ (z) defined on a domain D_, we

can carry out the process of analytic continuation until all possible analytic

continuations of the function w_ (z) have been found. The collection of analytic

functions generated in this manner can again be used to define a new function

on the domain which consists of all the domains on which these various func-

tions are defined. The function obtained in this manner is called a complete

analytic function. This function cannot be further extended. A point z0 is said

to be a singular point of the complete analytic function if it is a singular point

of any analytic continuation of w, (z). And sometimes, when no confusion is

likely to arise, we shall say that z0 is a singular point of the original function

wl (z) itself.

5.7.4 Multiple-Valued Functions

There is a certain difficulty associated with the definition of a complete

analytic function given in the preceding section. Thus, suppose that the

analytic function w_ (z) defined on the domain D1 can be analytically continued

along the two simple curves F1 and 1-'2 which terminate at the same point p,

62In section 5.5 we only asserted that the radius of convergence does not exceed the distance between zo and the

nearest isolated singular point.

488-942 0 - 73 - lO
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P7

,,- Singular point

FIGURE 5--12.--Paths for analytic continuation of multiple-valued function.

_.," N° b rannC_h_i _te_°fn

FIGURE 5-13. -- Domain for analytic continuation.
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as shown in figure 5-12. There is no guarantee that the analytic continuation

of w_ (z) along F1 will have the same value at p as its analytic continuation

along 1-'2. But if this occurs, the complete analytic function obtained from

w_(z) must have more than one value at the point p. Thus, although up to this

point we have assumed that all functions are single valued, we must in general

allow a complete analytic function to be multiple valued. It can be shown

(ref. 19, p. 218) that the analytic continuation along the path F1 will always

have the same value at the point p as the analytic continuation along F2 unless

there is a singular point (such as that shown in fig. 5-12) between these two

curves. 6a However, the mere existence of a singular point between the two

curves does not guarantee that the analytic continuations along the two dif-

ferent curves will have different values at p. This only occurs when the singular

point is a branch point. A branch point is a singular point of a function which

has the property that the function will not return to its starting value upon

analytic continuation along any arbitrarily small circle which surrounds

this point.

Suppose that the single-valued analytic function w_(z) is defined on a

subdomain DI of a domain D (see fig. 5-13). And suppose that D neither con-

tains any singular points of w_ (z) nor is it possible to construct a closed curve

within D which surrounds a branch point w_ (z). Then it is impossible for any

two analytic continuations of Wl(Z) along paths which lie entirely within D to

have different values at any given point p of D. Now, in terms of these analytic

continuations, we can construct on D (in the manner described above) an

analytic function w(z). Then this function will be single valued. It is an exten-

sion of wl (z) from the domain D_ to the larger domain D. And the fundamental

theorem shows that w(z) is the only single-valued analytic function with this

property. Therefore, when no confusion is likely to arise, we do not distin-
guish between the two functions w(z) and w_(z) and we simply say that w_(z)

is defined on the larger domain D.

For example, consider the function w_ (z) defined by

w_(z) =z in (5-17)

63This result is known as the monodromy theorem.
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Y

FIGURE 5-14.--Analytic continuation of function z _/'.

on a domain D_ which includes a portion of the real axis but which includes

neither the origin nor any portion of the negative real axis, as shown in figure

5-14. It is easy to verify that equation (5-17) represents a single-valued analytic

function in the domain D1. In order to proceed it is convenient to introduce

the polar representation z=re _° discussed in section 5.1. Then the function

(5-17) can be written as s4

wl (re i°) = rl/2ei°/2 (5-18)

When the point z is in DI, the argument 0 will always lie in the range

- rr < 0 < 7r (5-19)

(Notice that strict inequality signs are used.) Since the formula (5-18) with

an extended range of 0 determines an analytic function at each finite point of

the complex plane except r= 0 and since this function coincides with Wl(Z)

in D1, we can use this formula to analytically continue wt(z) outside of D1.

04 Recall that we have adopted the convention that the square root of a positive real number is always the positive

square root.
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Now the origin is a singluar point of wl (z). Hence, suppose we analytically

continue this function to the point p along F1, the semicircle with radius R

in the upper half plane shown in figure 5-14. Then the value of this analytic

continuation at p is R1/2e i(7r/2)= R1/2[cos (7r/2) + i sin (7r/2)'] = iR 1/2. But the

value at p of the analytic continuation along the semicircle F2 is R1/2e -i(_/2)=

R 1/2[cos ( -- 7r/2) + i sin ( -- 7r/2) ] =-- iR 1/2" These analytic continuations of

the function w_ (z) therefore have different values at the point p.

If, instead of stopping at the point p, we carry out the analytic continuation

of w_(z) first along F_ to the point p and then along F2 from the point p to the

point q (in the direction opposite to the arrows), we arrive at the value

R1/2ei2_/2=--R 1/2. But since the original value of w_ (z) at the point q is R1/2e _°=

R 1/2, we see that the function does not return to its original value upon ana-

lytic continuation around this circle. And since the radius R is arbitrary, this

shows that the origin is a branch point of w_ (z). By making the transformation

z= 1/w and taking R arbitrarily large, we can also show that the point at

infinity is a branch point of this function. And since z= 0 and z= oo are the

only singular points (and therefore the only branch points) of w_(z), this

function will always return to its original value when it is analytically continued

around any path which does not enclose the origin. 65

Now every analytic continuation of Wl (z) can be obtained from the formula

(5-18) by letting r range between zero and infinity and letting O take on all

values both positive and negative. But, since e 2i''= 1 for n = 0, _ 1, _+ 2, . .,

we need only consider values of 0 in the range 00 _< 0< 0o+47r (where 00

can be chosen as any fixed number) in order to obtain all possible values of the

function (5-18). Thus, the complete analytic function _(z) obtained from

w_(z) is the multiple-valued function defined by

ff_(re i°) = rl/2e +012 0 <- r <_ _; Oo <_ 0 <- Oo+ 47r (5-20)

It takes on two distinct values at each finite point of the complex plane except

at the origin, which is a branch point. And one of these two values is equal to

the negative of the other.

It will never return to its original value when analytically continued once around any path which does enclose

the origin.
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(a)

) X

(b)

(a) Branch cut in arbitrary location.

(b) Branch cut along negative real axis.

FIGURE 5-15.--Branch cuts for z 1/_.

It is usually undesirable to deal with multiple-valued functions. 66 We can

avoid doing this by drawing a line connecting the branch point of the function

z 1/_ at the origin with its branch point at infinity, as shown in figure 5-15(a),

and then restricting the analytic continuations so that they are not carried out

along any path which crosses this line. Such a line is called a branch cut and

it is used to prevent analytic continuations from being carried out along curves

which encircle the origin. The actual location of the branch cut is arbitrary but

we may, for definiteness, assume that it lies along the negative real axis, as

shown in figure 5-15(b). Then starting with the original function (.5-17) (which,

as can be seen from eqs. (5-18) and (5-19), is positive along the positive real

axis) and analytically continuing this function along all allowable paths in the

complex plane, we obtain the extended function

_After all, we would not expect a well-defined physical problem to have a solution which is multiple valued.
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Wl(re iO) _ rl/2eiS/2 O _ r _ _, -- Tf _ _ _ 71"

which is single valued and analytic at every point of the complex plane not lying

on the negative real axis. We can also analytically continue the function which

is equal to the negative of the original function (5-17) in D_ along all allowable

paths in the cut plane to obtain the extended function

W2(re ie) = rl/2e ie/2 0 < r < _; 7r < 0 < 3¢r

And this function is also single valued and analytic at every point of the complex

plane not lying on the negative real axis. The functions W'I and W2 are said to

be branches of the double-valued function (5-20). Taken together these two

branches assume all the values of the multiple-valued function and are there-

fore equivalent to it. Hence, we can deal with a multiple-valued function by

replacing it with its single-valued branches.

The complete function in this example is double valued and therefore

has two branches. However, we also encounter multiple-valued functions

which take on infinitely many values at each point and therefore have infinitely

many branches. For example, the function w(z)= In z is defined in polar

notation to be

w(re ie) = In re ie= In r+ iO

In order to obtain the complete analytic function we must (as in the preceding

example) let r take on all values in the range 0 < r < w and /9 all real values.

But since z= re i°= re i_e+2n_) if, and only if, n=0, __ 1, _+2, . .., this complete

function must have infinitely many values at each point. And these values

differ from one another by multiples of 2¢ri. This function also has a branch

point at the origin and a branch point at infinity. And if the branch cut is

again taken along the negative real axis, the infinitely many branches wn(z)

for n = 0, _+ 1, _+ 2, . . . of In z become

wn(reie)=ln r+iO 0< r< w; (2n- 1) zr< 19< (2n+ 1) zr

for n = 0, _+ l, ___2, . . .

The branch corresponding to the range - rr < 0 < 7r is called the principal

branch of the logarithm.
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The function z _ (where a is some complex constant) can be defined in terms

of the logarithm by the formula za=e _lnz. Hence, the branch points of this

function can be located only at the origin and at infinity. By using polar notation

we can express this function in the form z_=e_nre_i°=r_e i_°. And this shows

that the complete function is multiple valued unless o_ is an integer. In fact,

it takes on infinitely many values at each point unless c_ is a rational number.

The various branches of this function can be formed in the same way as for the

logarithm.

In a similar manner, it can be seen that for any finite point z0 the complete

analytic function associated with (z--zo) _ is multiple valued whenever _ is

not an integer. Its branch points are z = zo and z = c¢ and its branch cut can be

taken along any line joining these two points. However, once a branch cut has

been chosen, the various branches of this function will then be analytic every-

where in the cut plane.

5.8 PERMANENCE OF FUNCTIONAL RELATIONS

Let F(zl, . .., zn) be a complex function of the n complex variables

zl = Xl + iyl, . .., z, = xn+ iy,. if this function can be expanded in a power

series

,.1..yil_,i2 . . Z innF(zl, • • ., Zn) : all, ., _n"l h'2 •

il, • • ., in=l

with complex coefficients ai,, . .., a_, and if this series converges in some

neighborhood of each point in some domain of the 2n-dimensional space whose

coordinates are xl, . •., x,, yl, • •., Yn, then we say that F is an analytic

function of the n complex variables zl, . ., z,, in D. This is clearly an exten-

sion of the definition of an analytic function of a single complex variable given

in section 5.2.

Now let F(wl, . ., w,,, z) be an analytic function of the n+ 1 complex

variables wl, • •., w,, z for all values of the variables wl, . ., w, and for

all values of z in some domain Do. If wl (z), . .., w,(z) are analytic functions

of the complex variable z (in the usual sense) in some common subdomain

D of D0, then it can be shown (ref. 4) that the function g(z) defined by
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-Path of analytic

/ /r __ ....... / continuation of
/ _ / the functions

WllZ) wnlz)

FIGURE 5--16.--Illustration of permanence of functional identities.

g(z) -F(w,(z), .,w,(z),z)

is also analytic in D.

Now suppose that _l(Z), • ., ff_,(z) are analytic continuations of

wl(z), . .., w,(z), respectively, from D to some other common subdomain

/) of Do and these analytic continuations can all be obtained by analytically

continuing the functions wl(z), . .., w,(z) along a single curve F which

lies entirely within Do. (This is illustrated in fig. 5-16.) In addition, suppose

that wl(z), . .., w2 (z) satisfy the equation

F(w,, . . .,w,,z) =0 (5-21)

at all points z in D. Then by analytically continuing these functions along F to

/) and using the fundamental theorem of analytic continuation given in the

beginning of section 5.7, it can be shown (ref. 19, p. 210) that ff:l (z), . .,

fi_,(z) also satisfy equation (5-21) at every point of D. This is known as the

principle of permanence of Junctional relations. Roughly speaking, it means

that the analytic continuations of the solutions of equation (5-21) are also

solutions of this equation.
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5.9 DIFFERENTIAL EQUATIONS IN COMPLEX PLANE

5.9.1 Definition

We have already indicated the utility of extending the definition of a

differential equation to include the case where the variables are complex. To

this end let F(wl, . .., w,, z) be an analytic function of the n-4- 1 complex vari-

ables Wl, . .., w,,, z in some domain D.'Then the nth-order normal differential

equation in the complex domain is an equation of the form

dnW F ( dw dn'lw )_-- w, -dz'" " "' dz n-------_'z
(5-22)

Notice that in writing this equation we imply that its solutions, if they exist,

must possess complex derivatives at all points where they are defined. It is

also reasonable to require that the solutions satisfy the equation at least on some

domain in the z-plane. Hence, the solutions to equation (5-22) must be analytic

functions. This is a much stronger restriction than is imposed in the case of real

variables, where we require only that the solutions be sufficiently differentiable.

5.9.2 Fundamental Theorem

The following fundamental theorem (which is analogous to that given in

chapter 1 for the real-variable case) can be shown to hold (ref. 4, p. 119). For

each point 8r _1, • •., _,, zo of the domain D where the function F is analytic,

there exists a unique (i.e., single-valued)function w(z) which satisfies the initial

conditions

. ..,

is analytic, and satisfies equation (5-22) in some neighborhood of the point zo.

We shall be principally interested in the (effectively normal) linear equation

dnw d n" I W dw

dz _ _-a_(z) d--Tz-F+. . . +a,-_(z) --d_z+a,(z)w+ b(z)=O (5-23)

where the coefficients a_ (z), . .., a, (z), b (z) are all analytic on some common

domain Do. This equation is effectively of the form (5-22) with the function F

e7_t, . .., gn, z0 are n+ 1 complex numbers.
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analytic on the domain D which consists of all the values of the variables

wl, . ., w2 and all the values of the variable z which lie in the domain Do.

Hence, the fundamental theorem now becomes: For each set of complex

numbers _, . .., _, and each point zo of Do there exists a unique function

w(z) which satisfies the initial conditions

w(zo) = _,, w' (zo) = _2, • •., w("-')(zo) = _,

is analytic, and satisfies equation (5-23) in some neighborhood of the point zo.

There is also, in this case, an additional result, due to Fuchs (ref. 24, p. 4)

which asserts that this solution, w(z), has a Taylor series expansion about zo

whose radius of convergence is at least equal to the shortest distance between

zo and the boundary of Do.

Now suppose that w(z) is a solution to equation (5-23) on some subdomain

D1 of Do. Then the (single valued) function w(z) and all its derivatives are

analytic on D,. Let t_(z) be an analytic continuation of w(z) along some curve
in Do to some other subdomain D of Do, as shown in figure 5-17. Then since,

as indicated in section 5.7.2, the analytic continuation of a derivative of an

analytic function is equal to the derivative of the analytic continuation, we can

apply the principle of permanence of functional relations to equation (5-23)

,--Domainof analyticity
of coefficientsof dif-
ferential equations

-Path of analytic
continuation of
w(z), w'(z)..... w(n)(z)

FIGURE 5--17.--Illustration of analytic continuation of solution to differential equation.
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to show that the analytic continuation w(z) is itself a solution to equation

(5-23). Thus, the analytic continuation along any curve lying entirely within

Do of a solution to equation (5-23) is also a solution of this equation.

For example, the differential equation

+ 1
6z 6-_z2w=0

has the solution

W ( Z ) = Z 1/2 "3t- Z 1/3

But upon analytic continuation of this solution around any closed path en-

circling the origin, we obtain the function

Wl (Z) = (e2'r_z) 1/2 .-_ (e2,,iz ) _/3=_ z,/2 + ,e2,_i/_z_/3

And it is easy to verify by direct substitution that wl (z) is also a solution of the

equation. (In fact, w(z) and wl (z) are linearly independent.)

We shall now show that any solution to equation (5-23) which is defined

on a subdomain of Do can indeed be analytically continued along any citrve in

Do. This means that no solution to equation (5-23) can have a singular point

in Do. The assertion can be proved by assuming that there exists a solution

w(z) in a subdomain D1 of Do which cannot be analytically continued along

some curve F in Do and then showing that this leads to a contradiction. Thus,

if w(z) cannot be continued along F, there must be a point z_ on F as shown in

figure 5-18 such that w(z) can be continued up to, but not past, this point. We

can therefore choose a point z2 on the portion of F joining D1 to z_ which is closer

to z_ than any part of the boundary of Do. Upon analytically continuing the

solution w(z) along F to z2, we obtain a solution w2(z) of equation (5-23)

in a neighborhood of z2. And Fuchs' result shows that w2 (z) can be expanded

in a Taylor series about z2 that converges in a circle which includes the point

z_. But this constitutes an analytic continuation of w(z) along F past the point

z_, which was assumed to be impossible. And this proves the assertion.

It follows from these results that any solution 6s to equation (5-23) in

ss The existence of such a solution is asserted by the fundamental theorem but only in some neighborhood of this

point. And this neighborhood could be very small.

150



REVIEWOFCOMPLEXVARIABLES.

_-Domainof w(z) ZCircle of convergenceof
Taylor series expansion
of w2(z)

FICURE 5-18.--Continuation of w(z) along F.

a neighborhood of a point where the coefficients are analytic can actually be

extended to obtain a solution to this equation on the entire domain Do on which

the coefficients are analytic. However, in order to do this we must, in general,

allow these solutions to be multiple valued.

5.9.3 Linearly Independent Solutions

By using the fundamental theorem given in this section, the various results

given in section 1.6 for linear equations with real variables can be extended to

the complex-variable case. Thus, the homogeneous equation associated with

equation (5-23)

dnw d n- l w

dz---E+al(z) d-_L-T__+ . . +a,_l(z)w=O (5-24)

possesses n linearly independent (single valued) solutions wl(z), . .., w,(z),

called a fundamental set of solutions, in a neighborhood of each point of

Do. Now let Wp(Z) be a particular (single valued) solution of equation (5-23)

in the neighborhood of some point of Do. Then every solution of this equation

about this point can be obtained by making a suitable choice of the arbitrary

constants cl, . ,., c, in the general solution w(z) = clwl (z) + . . . + c,w,(z) _-

Wv(Z) of this equation.
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The definition and discussion of linear independence given in section 1.6

applies with only trivial modification to the case where the functions are com-

plex and analytic. Thus, in particular, a necessary and sufficient condition

(ref. 24, p. 13) that n (single valued) solutions Wl(Z), . ., wn(z) of equation

(5-24) be linearly independent on a domain Do on which the coefficients are

analytic is that the Wronskian

 (wl, • .,wn)-

1.131 W2 Wrt

i ! !
Wl W2 Wn

(n-l) . (n-l)
w_ n-l) W2 • • I._n

(5-25)

not be equal to zero at any point zl of Do. Since wl, . .., wn are analytic func-

tions of z, the Wronskian itself is an analytic function of z which we shah denote

by'T¢_ (z). Thus,

- . .., w (z) )

It is also easy to see that the Wronskian of the analytic continuations of

w_ (z) ..... wn(z) along a curve F in Do is equal to the analytic continuation of

the function _/'(z) along F.

It can be shown by using the rules for differentiating determinants and by

substituting in the differential equation (5-24) (ref. 24, p. 12) that 7//" satisfies

the first-order differential equation

_g//"

dz- Pl(Z)7¢/_ (5-26)

And upon separating the variables and integrating along any path F in Do,

we obtain

7¢/'(z) =ce -fP"_'_ (5-27)

where c is a complex constant of integration.
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?

Since pl(z) is analytic in Do, its integral _ p_(z)dz must
also be analytic

in Do. Hence, in particular, this integral cannot become infinite at any point of

Do; and therefore the exponential factor in equation (5-27) can never vanish

in Do. Thus, 7/Z(z) can only be equal to zero at a point z_ of Do if c= 0. And

this shows that, if 7¢/'(z) vanishes at any point of Do, it must vanish at every point

of Do.

In the special case where n= 2, equation (5-27) can be used to obtain an

explicit formula which determines a second linearly independent solution

wz(z) to equation (5-24) when one solution wl(z) to this equation is known.

Thus, when n=2, we find upon expanding the determinant and rearranging

that

And integrating this along any curve in Do yields the formula

I e -fP'(z)dzw2(z) =cw,(z) o [wl(z)]2 dz (5-28)

which agrees with the formula obtained by the method of variation of parame-

ters in section 4.1. It follows from the way in which it was constructed that any

solution w:(z) calculated from this formula will be linearly independent of

wl(z).
More generally, it can be shown (ref. 24, p. 16, example 10) that, if n- 1

linearly independent solutions, say wl(z), • •., w,-l(z), to equation (5-24)

are known, another linearly independent solution to this equation is given by

Wn= C
,_=1wi(z) [7¢/. (z)]2 Mi(z)dz

where 7t/1 (z) is the Wronskian
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_"_I(Z) = _/r(Wl, • • • , Wn-1) :--

Wl W2 • • • Wn-1

V V • W v
Wl W2 " " n--1

W_ n - 2 ) w[n - 2 ) . . w(n_-i 2)

and, for i = 1, 2, .

That is,

., n - 1, Mi(z) is the cofactor ofw_ -2 in this Wronskian.

5.10 NONELEMENTARY TRANSCENDENTAL FUNCTIONS

We shall have occasion to use two particular nonelementary functions

of a complex variable called the gamma function and the beta function. First,

we define the analytic function F(z) for_z > 0 to be the Eulerian integral

of the second kind.

F(z) = e-ttz-ldt (5-29)
d_O

This integral converges in the right half plane _ z>0 and diverges for

z <_ 0. It can be shown (ref. 25) that it represents an analytic function in its

domain of convergence. Although this analytic function is only defined by

equation (5-29) in the right half plane, it can be analytically continued into the

left half plane _ z _< 0 by using the formula

zr (5-30)F(z)F(1 -- z) sin zrz

to compute the values of F(z) for _ z _< 0 from its values at points in the

right half plane. It follows from this equation that F(z) has simple poles at

z=0,-1,-2, . . .

Integrating equation (5-29) by parts (with z replaced by z + 1) shows
that for _ z > 0
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Hence,

F(z+ 1) =z f:

REVIEW OF COMPLEX VARIABLES

e-ttz-ldt

F(z + 1) = zF(z) (5-31)

By successively applying equation (5-31) we find that for any positive

integer n

F(z + n) = (z + n -- l)F(z + n -- 1)

= (z+n--1)(z+n-2)F(z+n--2)

= (z -4- n -- 1) (z -4- n -- 2) . . (z -4- 1)zF(z) (5-32)

It is convenient to introduce a special notation for the factor multiplying

F(z) in the last member of this equation. Hence, we define the generalized

factorial function (z)_ by

and

n--1

(z),,= H (z+m)
rn=O

=z(z÷l)(z÷2) .

(z) o = 1

(z+ n-- 1) for n= l, 2, 3, .

(5-33)

Thus, the symbol (z)n denotes the product of n factors, each factor being

one larger than the preceding one. For example,

(7)3 = 7 x 8 x 9

2) 1 3 5 7
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Notice that when z = 1 in equation (5-33), we obtain the ordinary factorial

function since

(1)n=1"2"3 . . . n=n! (5-34)

By using this notation, equation (5-32) can be rewritten as F(z+ n) = (z)nF(z).

And, therefore, the generalized factorial function can be expressed in terms

of the gamma function by

F(z+ n) for n = 1, 2, 3, . . . (5-35)
r(z)

Since integrating equation (5-29) with z = 1 shows that F(1)= 1, we find

from equations (5-34) and (5-35) that

F(n ÷ 1) = n! for n = 1, 2, 3, . . (5-36)

This equation is also valid for n = 0 provided we use the usual definition 0!= 1.

The beta function B(z, _) is a function of two complex variables and is

defined by

= fl tz-l(1 - t)_-'dt (5-37)B(z,

for _ z > 0 and _ _ > 0. However, it is possible to express this function

in terms of the gamma function since

F(z)F(_) = ( fo e-ttz-ldt ) ( fo= e-'l"_-ld_ ")

= fo e-ttz-_( fo e-'_'¢-ld_')dt

And upon setting x = _'/t, we can eliminate _r from this equation to obtain

F(z)F(_) = fo e-ttz-'t¢ ( fo e-tXx¢-'dx) dt
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Hence, after changing the order of integration we find that

(

Then by defining 71 by 71 = t (x + 1) and eliminating t, we get

fo x`-' £F(z)F(_) = (1 + x)_ +z dx e-,,rf+¢-ldzl

fO _ X £-1= F(z+ ¢) (]+x)¢+z dx

And after setting x = t/(1 - t) this becomes

F(z) F(_) = F (z+_) f_ t¢-1 (1--t)z-ldt

But comparing this with equation (5-32) shows that

r(x)r(_)
B (.¢,z) - F(z+ ¢) (5-38)
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CHAPTER6

SolutionofLinearSecond-OrderDifferential

EquationsintheComplexPlane

In section 5.9 we extended the definition of a differential equation to

include the case where the variables are complex. In this chapter the ideas

presented in that section are used to find the behavior of and, in certain

cases, to construct solutions to the second-order differential equation

d2w dw
dz 2 + p(z) --_z + q(z)w= 0 (6-1)

where z is a complex variable and the coefficients p(z) and q(z) are analytic

functions in some domain D of the z-plane. We have seen that every solution

of this equation is an analytic function of z.

A point at which the coefficients of equation (6-1) are both analytic is

called an ordinary point of this equation. Thus, every point of D is an ordinary

point. A point z0 which is a singular point of either p(z) or q(z) (or both) is

said to be a singular point 69 of equation (6-1). And if the only singularities of

p(z) and q(z) which occur at zo are isolated singular points, z0 is also said

to be an isolated singular point of equation (6-1).

6.1 GENERAL BEHAVIOR OF SOLUTIONS AT ORDINARY POINTS

Let Zl be any point of D. It was indicated in section 5.9 that equation

(6-1) will possess two linearly independent (single valued) solutions, w,(z)

and Wz(Z), in some neighborhood of z,. These solutions are said to be a funda-

mental set of solutions. They possess Taylor series expansions about Zl, say

69 Notice that this definition is consistent with the one given in section 1.5.
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w,(z) = z,)"
n=0

W2(Z) = _ a(n2)(Z -- Z,) n

n=0

(6-2)

whose radii of convergence are at least equal to the shortest distance between

zl and the boundary of D. Since the coefficients of equation (6-1) can always

be analytically continued across those points on the boundary of D which

are not singular points of the equation, it is always possible to extend the

domain D (in which the coefficients are analytic) in such a way that every

finite point on its boundary 7° is a singular point of equation (6-1). Hence, we

can assert that the radii of convergence of the Taylor series expansions (6-2)

of the solutions w_ (z) and w2(z) are at least equal to the distance Ro between

zl and the nearest singular point of equation (6-1). It was also shown in

section 5.9 that the solutions w_ (z) and w2 (z) can be analytically continued

along any simple curve in D and that these analytic continuations are them-

selves solutions of equation (6-1). Thus, in particular, we can assert that

the series (6-2) not only converge within a circle of radius Ro but that they

also satisfy the differential equation everywhere within this circle.

6.2 GENERAL BEHAVIOR OF SOLUTIONS NEAR ISOLATED SINGULAR POINT

Suppose that z0 is either an isolated singular point or an ordinary point

of equation (6-1). Then the coefficients p(z) and q(z) of this equation will be

analytic within the punctured circular domain 0 < [z--z o I< R (shown in

fig. 6-1) whose radius R is equal to the distance between z0 and the singular

point 71 of equation (6-1) closest to zo. We shall call this domain 72 A. Now

let wl(z) and w2(z) be a fundamental set of solutions to equation (6-1) in

a neighborhood Do of a point z of A. We have seen in section 5.9 that these

solutions can be extended (by using their analytic continuations) so that

they satisfy equation (6-1) at every point of A. However, since z0 may be

a singular point and since it can be encircled by a curve such as the curve

F shown in figure 6-1, these extended solutions can be multiple valued.

7oProvided D has a boundary.

n Other than z0 itself.
72Notice that zo is not a point of A

160



SECOND-ORDEREQUATIONSIN THECOMPLEXPLANE

FIGURE 6-1.--Contour for analytic continuation of wl and wz.

In order to deduce the behavior of these extended solutions, we shall

now construct a fundamental set of solutions on A whose structure is particu-

larly transparent. To this end let the fundamental set w_(z) and w2(z) be

analytically continued from Do counterclockwise around i_. This process will,

in general, yield two new functions of z, say W1 (z) and W2 (z) which are defined

on Do by

W,(z) =wl(e2'_(z-zo) +z0) l

JW2 (z) = w2,(e 2'_i(z-- zo) + zo)

(6-3)

But we know that W_ (z) and W2 (z) must satisfy the differential equation (6-1)

and that every solution to this equation in Do can be expressed as a linear

combination of the fundamental set of solutions w_(z) and w2(z). Thus, there

exist complex constants a,, a12, a2_, a22 such that

W, (z) = a,lwl (z) + a,2w2 (z) l

1_/2 (Z) a21Wl(Z) "4-az2W2(Z)

(6-4)

161



DIFFERENTIALEQUATIONS

For example, consider the differential equation 73

,,. 1 +__L_I
w -t-_zW' 6z 2 w=0

and let z0 = 0. A fundamental set of solutions to this equation is w, =z 1/2 and

w2=z '/3. Upon applying equations (6-3) to these solutions, we find that

W, (z) = w, (e2_iz) = (e2'_iz),/2 = (_ 1)w, (z)

and

W2 (Z) = e2Zri/3Z 1/3 = e21ri/3w2 (g)

And, therefore, the constants which appear in equations (6-4) become, in this

case, a11=--1, a12=0, a21n_-0, a22_e 2¢ri]3.

We Shallnow show (in the general case) how the constants in equations

(6-4) can be used to construct the desired fundamental set of solutions to

equation (6-1) on the domain A. In order to do this, we first recall from the

theory of linear equations that the algebraic equations

(all -- h)Cl -4- a2lc2 _---i} (6-5)
al2cl -4- (a22 -- _)C2 =

have a nontrivial solution 74 in cl, c2, provided h is a root of the characteristic

equation

an-h a2, I = h2 _ (an + a22)h + (alia22 - a_2a21) = 0 (6-6)
a12 a22 -- I

This equation will either have two distinct roots or two equal roots. We shall

treat these two cases separately.

z3This equation was discussed in the example given in section 5.9.2.
74That is, a solution other than cl = c2 = 0.
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6.2.1 Case I: Roots of Characteristic Equation Distinct

First, suppose that the two roots of equation (6-6), kl and )t2, are distinct.

Let c_ 1), @) be a set of nontrivial solutions to equations (6-5) corresponding

to the root _,_ and c(_2), c_2) be a set of nontrivial solutions corresponding to

the root hz. Thus,

and

(all--kl)C_l)-4-a21c_l)=i}
alzc(1) + (a22 -- k,)c_ 1) =

(6-7a)

(all--h2)c_2)+a21c_S)=_i
a,sc S)+ (ass --  s)cT =

(6-7b)

ul (z) = c_l)wl (z) + c_l)ws(z) (6-8)

us(z) = c_2)wl(z) + c_S)w2(z) (6-9)

Then it follows from equations (6-3), (6-4), and (6-8) that ul(e2"_i(z - zo)+ z0),

the analytic continuation of Ul (z) counterclockwise around F, is given by

u1(e27ri(z -- ZO) "_- ZO) = c(11)w,(e2'_i(z -- zo) + zo) + c_l)w2(e21ri(z -- zo) A- zo)

= c l Wl (z) + @ W2(z)

= Ice')a,1 + c_l)aSl]W,(Z) + [c_1)a,2 -4- c_l)as2]W2(Z)

Hence, equations (6-7a) and (6-8) imply

u,(e2'_i(z - zo) + zo)= h,c_l)Wl(Z) + h,@)w2(z)=hlu,(z) (6-10)
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And the same argument shows that the analytic continuation of the solution

u2(z) around F, u2(e2'_i(z - zo) + zo), is

u2 (e2=i(z - zo) + zo) = k2u2(z) (6-11)

The constant _.1 is nonzero. If this were not true, equation (6-10) would

show that ul (e2=i(z- zo) + zo) is identically zero in Do. But then ul (e2=i(z--zo)

+ zo) could be analytically continued backwards along F to show that u_(z) ,

is identically zero. And since the constants c_1) and c_1) are not both zero,

equation (6-8) would show that Wl(Z) and w2(z) are linearly dependent. But

this is impossible since Wl(Z) and Wz(Z) are, by hypothesis, a fundamental

set. Hence, we conclude that _._ # 0. The same reasoning shows that _.2 # 0.

We can, therefore, define two (finite) numbers 81 and 82 by 75

1 1

81-27ri In _.1 82=_/In _2 (6-12)

and use these numbers to define the two analytic functionsfl(z) andf,(z) in

Do by

f,(z) = (z-zo)-81u,(z) [

Jf2(z) = (Z--Zo)-82U2(Z)

(6-13)

Since the right-hand members of these equations are products of functions

which can be analytically continued along any simple curve in A, it follows that

fl (Z) and f2 (Z) must also have this property. And since wl (z), w2 (z), (z-z0) -8,

and (z-zo) -8_ have no singular po]-nts in A, it follows from equations (6-8),

(6-9), and (6-13) that f_ (z) and J_(z) have no singular points in this region. _6

Hence, these functions have no branch points in A. On the other hand, the

analytic continuationsfi(e2'_i(z-zo)+zo) offi(z) for i= 1, 2 in a counterclock-

wise direction around any curve F which encloses zo are

fi(e2'_i(z-zo) + zo) = (e21ri(z--zo) ) -Siui(e27ri(z--zo) -f-2;o) for i = 1, 2

75The condition },_ # },2 implies that _ -- 82 is not an integer.
7e However, the point z0 may be a singular point of these functions.
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Hence, it follows from equations (6-10) and (6-11) to (6-13) that

1

f_(e2"(z-zo) +z0) =_ (z-zo)-Siui(e2_i(z-zo) +z0)

= (z- zo) -aiui (z) =fi (z) for i = 1, 2

But this shows that the point z0 is also not a branch point of the functions

fi(z), i= 1, 2. Hence, these functions will return to their original values when

they are analytically continued around any closed curve in A. And this implies,

as indicated in section 5.7, that they can be extended to single-valued analytic

functions on the entire domain A. We can therefore suppose that these ex-

tensions have already been carried out and thatfl(z) andf2(z) are defined on

the entire domain A. Hence, it follows from equations (6-13) that the extensions
of the solutions ul(z) and u2(z) from Do io_the domain Am(which we shall

also denote by ul (z) and Uz (z)) are functions of the form

u,(z) = (z-zo)8,f,(z)

u2(z) (z--zo)_zf2(z)
(6-14)

where fl(z) and f2 (z) are single-valued analytic functions on the entire domain

A. (The point z0, however, may be an isolated singular point of these func-

tions.) And as indicated in section 5.8 the extended functions u,(z) and u2(z)

must satisfy the differential equation (6-1) everywhere within A. These are
the solutions which we have set out to construct. We shall now show that

they are linearly independent. To this end suppose that T1 and Tz are any
two constants such that

_lUl(Z)-JI-_2U2(Z)----O

Substituting equations (6-8) and (6-9) into this equation shows that

[ w,(:) + [ + ]

And since wi (z) and W2 (Z) are linearly independent, it follows that
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3,_c_1) + _/2c_2) = 0

f"_lC_I) "3I- '_2C(22) =0

(6-15)

Hence, upon multiplying equation (6-7a) by T1 and equation (6-7b) by 'y2

and adding the results, we find that

(_1- X2)'_lCt 1) = (hl- X2)'_2C_ 2)= 0

But since we are considering the case where hi # h2, this implies that

= = v,c 1)= 0

And by using the facts that c_1) and c_21)are not both zero and c_2) and c¢22)are

not both zero, we can conclude that T1 = 3/2 = 0. But this shows that ul (z)

and Us(Z) are linearly independent.

Before discussing fhe implications of these solutions, we shall first treat

the case where the roots of the characteristic equation are equal.

6.2.2 Case Ih Roots of Characteristic Equation Equal

Thus, suppose that the roots of equation (6-6) are equal. Then the argument

used in the preceding section can easily be adapted to show that there still

exists at least one solution to equation (6-1) of the form

wl(z) = (z-zo)a'f,(z) (6-16)

where fl(z) is a single-valued analytic function in A and 81= (1/2rri) In M

with X, # 0. We can therefore assume that the fundamental set of solutions

Wl(Z) and w2 (z) of equation (6-1) in the domain Do (fig. 6-1) has been chosen

in such a way that wl(z) is given by equation (6-16). By analytically con-

tinuing this solution around F we find that in this case the function W1(z)

(defined in eqs. (6-3)) is given by W1 (z)= Mwl (z). And since wl (z) and w2 (z)

are linearly independent, the first equation (6-4) shows that
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a12 _ 0

all=kl

However, these equations imply that the roots of the characteristic equation

(6-6) are ;,1 = a,, # 0 and _.2=a22. But since we are considering the case

where )_,--},2, it follows that all=a2z=kl. Hence, in this case equations
(6-4) become

W,(z)=X,w,(z) }_/2(z) = a21wl(z) -4-_.,w2(z)
(6-17)

We now define the function f2 (z) on the domain Do by

f2(z) = (z-zo)-8,w2(z) a2,fl(z) In (z-zo)
2_'i)_,

(6-18)

This function can be analytically continued along any simple curve in A, and

it will return to its original value when it is analytically continued along any

closed curve which does not encircle z0. Its analytic continuation (counter-

clockwise) along any curve F which encircles z0 is

f2(e2_i(z--zo) +z0) = (z-zo) -a,e-2,,is,W 2 (z) a2,f,(z) In eZ"i(z -- zo)

Z--ZO) -61

)kl
_/_(z) a2,f,(z) In (z--z0) a2,

2Tri},, -- -'_-, f' (Z)

But inserting equation (6-16) and the second equation (6-17) into this relation

shows that
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f2(eZ"i(z -- z0)+ z0) =f2 (z)

Hence, the function f2 (z) will return to its original value when it is analytically

continued around any closed curve in A. It can therefore be extended to a

single-valued analytic function on the entire domain (which may have an

isolated singular point at zo). And we can now conclude from equations (6-16)

and (6-18) that the extension of the solution w2 (z) from Do to the entire domain

A (which we shall also denote by w2 (z)) is a function of the form

w2(z) = (z-zo)alf2(z) +aw,(z) In (z--zo) (6-19)

where f2 (z) is a single-valued analytic function on the entire domain A and we

have put a = a21/2zrikl. It can again be shown that the solutions wl(z) and

w:(z) are linearly independent.

6.2.3 General Conclusions

Notice that the fundamental set of solutions (6-16) and (6-19) with a= 0

are of the same form as the fundamental set (6-14) with 81 = 82. The funda-

mental set (6-2) which occurs at an ordinary point of equation (6-1) is a special

case of the fundamental set (6-16) and (6-19). We have therefore established

the following conclusion: Let zo be an ordinary point or an isolated singular

point of equation (6-1) and let R be the distance between zo and the singu-

lar point of equation (6-1) which is closest to Zo. Then equation (6-1) possesses

a fundamental set of solutions on the punctured circular region 0 < [z-z0l < R

which is of the form

wl(z) = (z-zo)a'f,(z)

Jw2(z) = (z - zo)8_fR(z) + awl(z) In (z -- zo)

(6-20)

where fl(z) and f2(z) are analytic single-valued functions in 0 < ]z-zo[ < R

and a, 81, and 82 are complex constants.

The fundamental set (6-20) is called a canonical basis. The constant a

is equal to zero whenever 81 - 82 # 0, - 1, - 2, .... The case where 81- 82

= 0, _1, _+2, . . . is referred to as the exceptional case. Notice that the

constant a may also vanish in the exceptional case. This occurs, for example,

when z0 is an ordinary point of equation (6-1).
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We should not conclude from these results, however, that the solutions

of equation (6-1) will always have singularities at the singular points of this

equation. For example, the equation

z2w '' -- 2zw ' + 2w = 0

has an isolated singular point at z = 0. But the general solution to this equation
is

w = A oZ,+ .4 lz 2

where Ao and .41 are arbitrary. And this shows that every solution of this

equation is analytic at z = 0.

By changing notation we can rewrite this solution in the form

w = ao + al(z - 1) + (al -- ao) (z - 1) 2

where a0 and al can now be taken as arbitrary. This is evidently a canonical

basis at the ordinary point z = 1. Since it is an entire function, it certainly

exists and satisfies the equation within a circle whose radius is larger than

the distance between z= 1 and the nearest singularity (namely, z= 0) of the

differential equation.

If either of the functions fl (z) and J2 (z) in equations (6-20) is not analytic
at zo, then z0 must be an isolated singular point of this function. Hence, fl (z)

and f2 (z) can always be expanded in the Laurent series 77

f,(z) = zo)"

bT(z-zo) 
n_--O0

(6-21)

which converge for 0 < [z-zol < R. An important special case occurs when

the functions j_ (z) and j_ (z) either have poles or are analytic at zo. Then the

series (6-21) contain at most a finite number of negative powers of z-zo and
can therefore be written in the form

77Which may or may not contain negative powers of (z-zo).
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= b, ( - zo)" for i = 1, 2
n=-r i

where r, and r2 are finite integers (they may be negative or zero). However,

we can shift the index in the sums by putting k= n+ r_ and then summing on

k. Thus,

=
k=O k=O

for i--1, 2

where we have put a_) - b_)q for i = 1, 2.

Inserting these equations into equations (6-20) shows that in this case the
canonical basis is of the form

w,(z)=(z-zo)P, _ a(k')(z-zo)k
k=O

W2(Z) = (Z--gO) p2 _ a(_)(z--zo)k+ aw,(z) In (z--zo)

k=O

(6-22)

where we have put p, = 6, - r, and p2 ---- 62 --/'2. The series converge everywhere

within the circle ]z-zo[ < R (including the point zo) and they, therefore, repre-

sent analytic functions within this circle. The solutions Wl and wz are said to

be regular. It follows from the fact that r, and r2 are integers that a vanishes

whenever p,--p2 # 0, -4-1, ___2, . . . since it vanishes when 6,--62 has this

property.

We have already seen that equation (6-1) will always possess two regular

solutions (with p, = pz = a = 0) at the point z0 whenever z0 is an ordinary point

of this equation (i.e., if p(z) and q(z) are analytic at z0). We shall now deter-

mine certain conditions which the coefficients of equation (6-1) must satisfy

at an isolated singular point z0 if this equation is to possess two regular solutions

about z0.

Since w,(z) and w2(z) are linearly independent in 0< IZ-Zo[ < R, their

Wronskian (see section 5.9.3)

w,(z)w (z)

¢ ¢w,(z)
(6-23)
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cannot vanish at any point z of this domain. On the other hand, putting

gi = _ a_kO(Z--Zo) k for i= 1, 2 in equations (6--22) and substituting the
k=0

result into equation (6-23) shows that

Y/'(z) = (z - zo)p,+p,-1Gl(z) + a(z -- zo)2pl-lG2(z) (6-24)

where we have set GI = (p2 - pl)g,g2 + (z- zo)! (gig2 - g'lg2) and G2 = g2.

Since gl and g2 are single-valued analytic functions in the entire circle
Jz - zo[ < R (including z0), it is clear that G, and G2 are also functions of this

type. And since a -- 0 whenever the exponents p_ + p2 - 1 and 2p_ - 1 in equa-

tion (6-24) do not differ from one another by an integer, this equation can
also be written as

= (z - zo) Go(z)

where )t is the smaller of the two numbers p, + p2 - 1 and 2p_ - 1 and Go(z)

is a single-valued analytic function in the entire circle Iz- zo[ < R. Hence,
Go(z) can be represented by a power series

Go(z) = An(z- zo)
n=O

whose radius of convergence is R. But it follows from the fact that _"(z) is

not equal to zero in 0 < [z- zo[ < R that there must be a smallest integer,
say m, such that Am # O. Hence,

= (6-25)

where

G(z) = ,_ z4k+m(Z -- ZO) k = (Z -- zo)-mGo(z)
k=O

is also a single-valued analytic function in Jz -- Zol < R but not equal to zero

at zo. And since Y"(z) does not vanish at any point of the punctured region
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0 < ]z -- z01 < R, we conclude from equation (6-25) that G(z) is not equal to

zero anywhere within the circle ]z - z0] < R (including the point z0). Hence,

differentiating (6-25) shows that

1 d_ dlnT¢/" h+m
P(z)

_/" dz dz z-zo

where

G'(z)
P(z) = G(z)

is a single-valued analytic function in Iz - z01 < R since its denominator does

not vanish in this domain. But equation (5-26) shows that the coefficient

p (z) of w' in equation (6-1) is related to the Wronskian by

1 a7¢/"

p(z) dz

Thus, if equation (6-1) possesses two regular solutions, its coefficient p(z)

must be of the form

h+m
p (z) = + P (z) (6-26)

g -- Zo

Similarly, it can be shown by substituting the first equation (6-22) and

equation (6-26) into equation (6-1) that this equation will possess two regular

solutions at z0 only if the coefficient q (z) is of the form

+__E_+ q(z)
q(z)=(z_zo) 2 z-zo

where c_ and /3 are constants and Q(z) is analytic at z0. We have therefore

shown that equation (6-1) can possess two regular solutions at the point zo

only if its coefficient p(z) has, at most, a simple pole and its coefficient q(z) has

at most a pole of order 2. We therefore say that a singular point Zo of equation

(6-1) is a regular singular point if
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(1) p (z) is either analytic at z0 or has a simple pole at z0

(2) q(z) is either analytic at zo, has a simple pole at zo, or else has a pole

of order 2 at z0.

Notice, however, that we have not yet shown that equation (6-1) always

possesses two regular solutions at any regular singular point.

An isolated singular point of equation (6-1) which is not a regular singular

point is called an irregular singular point.

In order to treat the point z=oo, we must, as in section 5.3, introduce the

new independent variable _= 1/z into equation (6-1). Then the point z= oo

will be an ordinary point, a regular singular point, or an irregular singular point

if the point _ = 0 is, respectively, an ordinary point, a regular singular point, or

an irregular singular point of the transformed equation. But the change of

variable _= 1/z transforms equation (6-1) into the equation

d2w __A_ qo(_)w= 0d_ 2 +-Po(_) (6 -27)

where

2 1 (1)= _ _P -_ =2z--zZP(Z) (6-28)

1 1

Qo(_) --_ q ( -_ ):z4q(z) (6-29)

Thus z= oo is an ordinary point of equation (6-1) if both Po(_) and Qo(_)

are analytic at _=0, which is equivalent to saying that 2z--z2p(z) and z4q(z)

are analytic at z= oo. Similarly, the point z= oo is a regular singular point of

equation (6-1) if P0(_) has, at most, a simple pole at _=0 and Qo(_) has, at

most, a pole of order 2 at _=0, which is equivalent to saying that 2z--z2p(z)

has, at most, a simple pole at z= oo and z4q(z) has, at most, a pole of order 2 at

z= pp. If the point z= oo is an isolated singular point of equation (6-1) but is not

a regular singular point, it is an irregular singular point. It is clear that the

coefficients p(z) and q(z) themselves must certainly be analytic at z = oo when-

ever this point is a regular singular point.

These definitions are best clarified by considering an example. Thus, the

differential equation

Z2(Z - 1)w" -- (z+ 1)w' +zw=0
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can be written as

(z+l) w'A- 1
w" z2(z_l ) z(z-1) w=0

Hence,

(z+l) 1

p(z)= z2(z_ 1 ) q(Z)=z(z_l)

And the function p has a simple pole at z = 1 and a pole of order 2 at the point

z = 0. The point z = 0 must, therefore, be an irregular singular point. The func-

tion q has simple poles at z= 0 and z= 1. Hence, the point z= 1 is a regular

singular point. All other finite points are ordinary points. In order to consider

the point at infinity we must consider the functions 2z-z2p(z) and z4q(z)

(instead of the coefficients p and q) which, in this case, become

2z_ z_p= 2z + z+ 1 z 3
z - 1 z4q -- Z--1

Hence, 2z-z_p has a simple pole and z4q has a pole of order 2. And this shows

that the point at _ is a regular singular point.

We shall now show by actually giving a procedure for finding the solutions
that the differential equation (6-1) always possesses two regular solutions at a

regular singular point.

6.3 SOLUTION OF EQUATION ABOUT ORDINARY POINTS AND REGULAR,

SINGULAR POINTS

Let z0 be either an ordinary point or a regular singular point of the differ-

ential equation

w"+p(z)w'+q(z)w=O (6 -30)

Since p has, at most, a simple pole and q has, at most, a pole of order 2 at z0,

the Laurent series expansion for p about z0 contains, at most, one negative

power of z - z0 and that for q contains, at most, two. Let R1 and R2 be the
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distances between z0 and the nearest singular points of p(z) and q(z), re-

spectively, tO zo. Then R1 and R2 will be strictly positive and

p(z) = _, pk(z-zo) _'-_ for 0 < Iz-zol < R, (6-31)
k=0

q(z) = _, qk(Z--ZO) k-2 for 0 < JZ--Zol < R2 (6-32)
k=O

The point zo will be an ordinary point of the differential equation if, and only if,

P0 = qo = ql = 0 (6-33)

6.3.1_ First Regular Solution

We shall now show that equation (6-30) always has at least one solution

of the form

ux(z ) = (z-zo)'p _ an(z-zo) n
tt=O

(6 -34)

in some punctured circular region about the point zo. This will be accomplished

by first showing that the constants p and an can always be determined

in such a way that equation (6-34) formally satisfies the differential equation.

It will then be shown, a posteriori, that the formal operations were indeed

justified and therefore that the formal solution is, in fact, a true solution of

the differential equation. The procedure which we develop by this process can

then always be used to construct a solution to any given differential equation_

of the form (6-30) in the neighborhood of any of its ordinary points or regular

singular points.

Since the assumed expansion (6"34) must certainly have a leading term

and since the exponent p is not, as yet, specified, we can always assume

that matters are arranged so that ao # 0. We now substitute this expansion into

the differential equation (6-30) and suppose that the series can be differen-

tiated term by term. Then
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_o (n + o) (n + p - ])a.(z -- zol"+P-2

+ [_=oPk(Z-- Zo)k-'] [_=o (n + p)a.(z-- zo)"+P-' ]

+ = qk(z--zo) k-_ = an(z--zo) "+° =0

And after forming the Cauchy products of the series and adding the resulting

series term by term, we get

(Z--Zo)n+o-2{(n+p)(n+p - l)an+ _ ak[(k+p)pn-k+qn-k]}=O
n=O k=O

(6-35)

Now it follows from the uniqueness property of power series that this

series will vanish for all values of z in some domain only if the coefficients

of each power of z -- zo vanish individually. Upon equating these coefficients to

zero, we obtain for n= 0

F(p)ao = 0 (6-36)

and

n--1

F(n + p)a.=- _, ak[(k+ p)P.-k + qn-k]
k=O

for n= l, 2, . . .

(6-37)

where we have put

F(p) =- p2+ (po-- 1)p+q0 (6-38)

Since, by hypothesis, ao # 0, equation (6-36) implies
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F (p) --- p2 -4- (po - 1 ) p -4- qo = 0 (6-39)

This quadratic equation is called the indicial equation. Its two roots are

called the characteristic exponents of the differential equation at the point

z0. Equation (6-37) is called the recurrence relation.

If the constant p in the assumed solution (6-34) is chosen to be a root of

the indicial equation (6-38), the coefficient of (z - Zo) ¢-2 in equation (6-35)

will vanish for arbitrary values of the constant ao. And if there is no positive

integer n for which F(n + p) = 0, equation (6-37) can be used to calculate

successively (starting with a0) the coefficients 7s an in such a way that the

coefficients of all the remaining powers of z - z0 in equation (6-35) will vanish.

Thus, when the constants p and an for n -- 1, 2, . . . are determined in this

manner, the series (6-34) will at least formally satisfy the differential equation

(6-30) with the constant ao arbitrary.

Of course, if F(n + p) vanishes for some positive integer n, we have no

assurance that equation (6-37) can be used to calculate an. But let the roots of

the indicial equation (i.e., the characteristic exponents) be denoted by p,

and t)2 with the notation chosen so that ,_ p, I> _J t)2, and let

v _ pl- p2 (6-40)

Then

v 1> 0 (6-41)

And since a quadratic function can always be expressed as the product of its

factors, we can write

F(p)=(p--pl)(p--p2)

Hence,

F(n+p,)=n(n+v) (6-42)

7sNotice that for each integer n the recurrence relation (6-37) expresses an only in terms of the coefficients

ak with 0 _<k < n. Hence, it can be used to first determine a, in terms of ao and then to determine a2 in terms of a,

and ao. But since a, is known in terms of a0, this determines a2 in terms of ao. By proceeding in this manner, each a,
can be determined in succession in terms of a0.
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Then, since equation (6-41) shows that

(6-43)

it follows from equation (6-42) that

F(n+pl) # 0 for n=l, 2, . . . (6-44)

Hence, when p= pl, the coefficients an for n= 1, 2, . . can all be calculated

recursively in terms of a0 from the recurrence relation (6-37). Thus, equation

(6-30) will always possess at least one formal solution of the form (6-34) about

the point z0.

It is still necessary to verify that this formal solution is justified. In order to

do this, we must show that the series _ an(z--zo)" obtained by the procedure
n=0

described actually converges. We can then conclude from the theory of power

series given in section 5.5 that the formal operations of (1) differentiating the

series (6-34) term by term, (2) forming the Cauchy l_roduct of the resulting

convergent series with the convergent series (6-31) and (6-32), and (3) adding

the resulting convergent series term by term are justified 79 and, hence, that

equation (6-34) is indeed a solution to the differential equation (6-30).

In order to establish the convergence of the series in equation (6-34) for

the case where p = pl, notice that in view of equations (6-42) and (6-44) the

recurrence relation (6-37), with p=p_, can be put in the form

n-1

ak[(k+p,)pn-k+qn-k]
k=O

an=-- n(n + v)
for n = 1, 2, . . . (6-45)

79 We shall subsequently encounter (in ch. 9) a case where the constructed series actually diverges and hence

the formal procedures are not necessarily justified.
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Therefore,

J n--1 Jak[(kA-p,)Pn-kA-q,_-k]
k=O

In(n+ ) I

n-1

l ak l[ IP=-k l lP, l+ l qn-k l+k lPn-k l ]
_< k= 0 (6- 46)

nln+vl

Let R= min {R1, R2}, where R1 and R_ are the radii of convergence of

the series (6-31) and (6-32)forp and q, respectively. Then R is strictly positive

(since R, and R2 are positive) and the Cauchy_estimates, given in section 5.5,

for the derivatives of the analytic functions p and q imply that there exist finite

positive constants M and N such that

M N

I pk I <_ R---_ and I qk I <_ R---_ for k = 0, 1, 2, . (6-47)

which implies that

Jpk lip, J+Jqk J <_MIp' f+N
R k

fork----> 1

And since In + vJ _> _ (n + v), it follows from equation (6-43) that In + v[ I> n

for n= 1, 2, .... Inserting these results into equation (6-46) shows that

janl<_l MJp +N +__ R _-k
n k=O

for n= 1,2,... (6 -48)

Now put P = MJpll +N+M+ 1. Then P is afintte number which is larger

than 1; and for n i> 1 and k< n,
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glp, l+N+kM
n

_MIp, I+N+M
n

_P

Hence, it follows from equation (6-48) that

n k=O
for n=l,2,... (6-49)

which for n= 1 becomes

la,l--< a0' ,6 0,
Suppose that for n > 1

lakl _< la0l for 1 <_ k < n (6-51)

We shall now show that this implies that the inequality also holds when

k = n. Since n can be any integer larger than 1 and since equation (6-50)

shows that the inequality also holds when n= 1, we can then conclude by

induction that the inequality will hold for every positive integer n. Thus,

inserting the inequality (6-51) into equation (6-49) shows that

]an] _< P _1 pkn _ la°l
k=0

(6-52)

But since P I> 1, it follows that P_"_< pn-l. And when this is inserted into

equation (6-52), we find that

 6-53 
Hence, we can conclude by induction that this inequality holds for every

positive integer n.

We can now use this inequality to show that the series _' an(z--zo) _,
n='_0

180



SECOND-ORDEREQUATIONS IN THE COMPLEX PLANE

which appears in the solution (6-34), converges at least within the circular

region (of nonzero radius)

R

Ix-z01 _ 2---P (6-54)

To this end, notice that within this circle the inequality (6-53) shows that the

nth term of this series has the property that

la,,(Z--zo)nl= lanlIx--z01 laol = la01 (6-55)

And since the series

is simply a geometric series, it certainly converges. Hence, in view of the in-

equality (6-55), a simple application of the comparison test so shows that the

series _ an(z-zo)" is absolutely and uniformly convergent at least within
n=0

the circle (6-54). It, therefore, represents an (single valued) analytic function

within this circle.

Thus, we have shown that

Wl(Z) (Z Zo)Pl 2 (1) Z: _ a n ( --zo) n
n=O

(6-56)

is a solution to equation (6-30) within some circle about z0 for arbitrary @)

provided the coefficients a_1) for n = 1, 2,... are computed from the recurrence

relation (6-45). But the series in (6-56) converges within a circle about z0

which passes through the singular point of wl (z) nearest to z0. In fact, the radius

of convergence of this series must be at least as large as the distance R between

z0 and the nearest singular point of equation (6-30). In order to prove this,

notice that R1 and R2, the radii of convergence of the series for p and q, re-

spectively, must be equal to the distance between zo and the nearest singular

s°See ref. 23.
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points of these functions. But it follows from the definition of a singular point

of a differential equation that R = min {R1, R2}. Hence, p and q are single

valued and analytic within the punctured circular region A defined by

0 < [z - z01 < R. Now since wl is a solution to the differential equation, it

must be possible (as shown in section 5.9.2) to analytically continue this

function along any simple curve in A. And, therefore, w_ cannot have any

singular points within A. But it certainly has a singular point on its circle of

convergence. Hence, its radius of convergence cannot be smaller than R.

And this proves the assertion.

Since the analytic continuation of a solution of the differential equation

(6-30) is also a solution of this equation, we can now conclude that the function

wl (z) given by equation (6-56) converges and satisfies the differential equation

(6-30) at every point of the domain 0 < Iz - zol < R, where R is the distance

between zo and the nearest singular point of equation (6-30).

We have now shown that equation (6--30) possesses a r_egular solution

(6-56) about any ordinary point or regular singular point of this equation.

Before obtaining a second regular solution we shall introduce an example

to illustrate the procedure described in the preceding paragraphs. Thus,

consider the equation

3z2w " + zw' - (1 + z)w = 0 (6-57)

Since the coefficients p and q are

1 l+z

p (z ) = -_z q = 3z 2

and since the coefficients (6-28) and (6-29) of the transformed equation are

5z z_(1 + z)

2z - z2p = -_ z4q = 3

we see that every point is an ordinary point except the point z = 0, which is a

regular singular point, and the point z = _, which is an irregular singular point.

We know that if we seek a solution about the regular singular point

z = 0 of the form
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w = _ anz "+p (6-58)
n=0

we will obtain at least one and perhaps two solutions to the differential equation

in which the constant a0 is arbitrary. And since the nearest singular point of

the equation to z = 0 is at _, we know that the series will converge in the

entire plane.

Instead of using the general formulas obtained above it is usually easier

in any given case to derive the solution from first principles by substituting

the assumed power series into the differential equation. Thus, after substituting

equation (6-58) into equation (6-57) and differentiating term by term, we get

[3(n + p)2 _ 2(n + p) - 1]a_z n+p - _ a_ '_+p+l = 0
n=O n=O

In order to collect the coefficients of like powers of z, it is convenient to

reindex the sums so that the same powers ofz appear in each term. Thus, in

the second sum, we replace the dummy index n by the index k = n + 1 and in

the first sum we put n = k. And since k = 1 when n = 0, in the second sum we

obtain

[3(k + p)2 __ 2(k + p) - 1]akz k+p - _ ak_iz k+p = 0
k=O k=l

Now equating to zero the coefficients of like powers of z gives

[3p z -- 2p -- 1]ao = 0 for k = 0

and

[3(k+p)2-2(k-4-p) -1]a_=ak-_ for k=l, 2, . (6-59)

Since a0 # 0, the indicial equation is

F(p) =3p 2-2p-1
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And its roots are

pl = 1 and p2 = 1/3 (6-60)

When p= 1, the recurrence relation (6-59) can be solved for all values of k

and can be written as

ak-1

ak= k(3k+4)
fork=l,2, .

or writing out the first few terms

al

a2--2 × 10

an-1

an= n(3n+4)

In order to determine an in terms of a0 we multiply together both members of

these equations to obtain

al " a2 . . . a,-- (1. 2 . . n) [7" 10 . . (3n+4)] a0"al . . • an-1

and then divide through by al • a2 . . . an-_ to get

ao for n = 1, 2, . . . (6-61)
an n![7 • 10... (3n + 4)]

Notice that the term in square brackets is a product whose factors are

elements of an arithmetic progression. The factors in this progression in-

crease by 3 in each term. Hence, if we factor out a 3 from each term we obtain
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where we have the generalized factorial function defined in equation (5-33).

Upon substituting this into equation (6-61) and then substituting the result

together with p = i into equation (6-58), we obtain the regular solution

t6-62t
where we have put Ao = 3ao.

6.3.2 Second Regular Solution

We shall now use the regular solution w, (z) obtained in section 6.3.1 to show

that equation (6-30) always possesses a second regular solution about any

ordinary point or regular singular point z0. In order to do this we use the results

obtained in section 5.9.3, which show that

f dz e -fP'_w:(z) = w,(z) [wl(z)]: (6-63)

is a solution of equation (6-30) which is linearly independent of wl (z). We have

omitted the arbitrary constant c in equation (5-28) since we may assume that

it has been absorbed into the arbitrary constant a0 which multiplies wl(z).

Now upon integrating equation (6-31) along any path in the punctured

circular region 0 < ]z - z0I < R_, we obtain

f p(z)dz=po ln(z-z0) -4-co+go(z) (6-64)

where

= pk

go(z)- T (z-z°)k (6-65)

and co is an arbitrary constant.
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Since the series _ pk(z--zo) k converges, the series (6-65)must also con-
k=l

verge (section 5.6). Hence, go(z) is an analytic function in a circle centered at

zo. It, therefore, follows from equation (6-56) that

e
= (z--zo)-2p,e-po In (Z-Zo)g(z)

[w,(z)] 2

= (z- zo)-(2p,+"o)g(z) (6-66)

where we have put

e-yo( z)
g(z) = e-Co and

[g, (z) ]2 n=o
gi(z)- _ a_l)(z--zo) n

Since a_1) # 0, there is some neighborhood of the point zo in which gl (z)

is never equal to zero And since gl (z) is analytic at zo, it follows that the func-

tion [gl (z) ]-z is also analytic and not equal to zero sl at z0. Similarly, it follows

from the fact that go(z) is analytic at zo that exp I--go(z)] is analytic and non-

zero s_ at zo. Hence, the function g(z) is analytic and not equal to zero at

zo. It can, therefore, be expanded in the power series

0¢

g (z) = 7o=an (z -- zo) n with ao # 0 (6-67)

which converges in a circle of finite radius about zo.

Now since the two roots p_ and p2 of the quadratic indicial equation (6-39)

are given by

- (po- 1)_ V(po-1) 2-4qo
2

it follows that p_+p2=l-po. And therefore, in view of definition (6-40),

2p ! +po = v+ 1 (6-68)

sl Notice that [gl(z)] -2 and exp [--go(z)] can only equal zero at points where gl(z) and g0(z), respectively,

become infinite; i.e., at singular points of these functions.
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When equations (6-67) and (6-68) are substituted in equation (6--66)

and the resulting expression is substituted into the integrand of equation

(6-63), we find that

f 1w2(z)=w,(z) (z-zo) ÷'  "(z-z°)ndz
n=0

And it follows from the fact that the power series converges that we can

interchange the order of summation and integration (section 5.6) to obtain

w (z) =,

'w,(z) o,n
n--P

n=O

wl(z)
n=o n--I )
n_t,

(Z--Zo) "-_ for v # 0, 1,2, .

-- (Z--zo)n-"+Wl(Z)06, In (Z--Zo)

(6-69)

forv=0,1,2, .

Since these series converge, they represent analytic functions within

their circle of convergence. Therefore, the product of either of these series

with the series in equation (6-56) is again an analytic function which can be

expanded in a power series _ a _2) (z - z0) _ with a nonzero radius of converg-
n=0

ence. Hence, in view of definition (6-40), it follows from equation (6-56) that

equation (6-69) can be put in the form

W2 (Z) = (Z -- Zo) P2 n___0 a_)(z -- Zo) n -4- awl (z) In (z -- z0)
(6-70)

where a= 0 for v # 0, 1,2, . . .

By repeating the argument used in section 6.3.1 to determine the size of

the circle of convergence of the solution (6-56), we can again show that

the function w2 (z) given by equation (6-70) converges and satisfies the differ-

ential equation (6-30) at every point of the domain 0 < Iz-z01 < R, where R

is the distance between zo and the nearest singular point of equation (6-30).

We have now proved that the linear second-order differential equation

(6-30) possesses two linearly independent regular solutions at every ordinary

point and at every regular singular point.

In order to show how to construct the solution (6-70), it is necessary

to consider certain cases separately.
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6.3.2.1 Case (i): v # O, 1, 2, . . .-First, consider the case where the

difference in the characteristic exponents v is not equal to an integer. Then

a=0 in equation (6-70), and this solution is of the same form as the trial

solution (6-34) with p = p2. Hence, if equation (6-70) is substituted into the

differential equation (6-30), we will find, as before (since p2 already satisfies

the indicial equation), that the coefficient a ¢2)must satisfy the recurrence rela-,

tion (6-37) with p= p2. But since equation (6-40) and the equation following

equation (6-41) show that F(nA-p2)-= n(n--v), the recurrence relation (6-37)

with p = p2 can be written in the form

n-1

n(n--v)a,=-- _ ak[(k+p2)p,-k+q,-k]
k=0

for n= 1, 2, . . (6-71)

And since v is not equal to an integer, the coefficient of a, never vanishes.

Hence, this equation can be solved recursively to determine the coefficients

a_) in exactly the same way that the coefficients a_/) in the first solution (6-56)

were determined. Nothing new is involved. In fact, in solving the recurrence

relation in this case it is usually easier to leave p unspecified as long as possible

and to determine the coefficients of the first and second solutions

simultaneously.

For example, the left member of the recurrence relation (6-59) of the

differential equation (6-57) considered in section 6.3.1 can be factored to

obtain

ak-1

ak-- (p+k--1) (3p+3k+l)
for k= 1, 2, .

or, writing out the first few terms,
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ao

a, p(3p÷4)

al

a2----(p+l) (3p+7)

an-1

a,,-- (p+n--1) (3p+3n+ 1)

And upon multiplying together both members of these equations we obtain

al • a2 • a3 . . . an

aO'al'a2 . . . an-1

Hence,

[p(p+ 1) . . . (p+n--1)] [(3p+4) (3p+7) • . (3p+3n+l)]

a,= [p(p+l) .

a0

(p+n--1)] [(3p+4) (3p+7) . . . (3p+3n+l)]

The characteristic exponents p_ and p2 are given by equation (6-60). If we

set p = pl = 1 in this equation, we obtain the coefficients of the first solution.

But if we set p=p2, we obtain' the coefficients
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ao

/ tl
ao

[(-1).2.5 . . . (3n--4)]n!

of the second solution. After using the generalized factorial function (eq.

(5-27)) to get

(-1).2.5...(3n-4)=3"(-_---)(-_--+1)(-1+2) "

= 3"(-- _-) n

and then substituting the results with p= 1/3 into equation (6-58), we find

that the second solution to equation (6-57) is

1n'(3)n
n-(113)

where we have put B0 = bo3 -1/a.

6.3.2.2 Case (ii): r= 1, 2, . . . and a=0.-In this case the second

solution -(6-70) will also be of the same form as the trial solution (6-34)

with p = p2. Hence, its coefficients a_2) for n = 1, 2, . . . must again be deter-

mined by the recurrence relation (6-71) with p=p2. But since v is a positive

integer, the left-hand side of this equation will vanish when n= v. The recur-

rence relation for a_ can therefore not be satisfied unless the right-hand side

of this equation

2 ak[(k-4-p2)Pv-k'4-qv-k]
k=0

also vanishes, in which case it will be satisfied automatically for all values

of a_. We then obtain a solution involving two arbitrary constants. And since

this solution must be a general solution to the differential equation, it will

contain the solution obtained for p = pl.
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This situation will always occur in the important special case when zo

is an ordinary point of the differential equation. For in this case, equations

(6-33) and (6-39)show that the indicial equation is

F(p) = p(p-1) =0

Hence, the characteristic exponents are pl = 1 and pz = 0; and their difference

v = pl- p2 = 1 is a positive integer, s2 But it follows from equation (6-33)

that the recurrence relation (6-71) for al becomes

1 × O× al=ao [(0)< pl) -4-0]

and this is automatically satisfied for any choice of al. The recurrence relation

(6-71) with n=2, 3, . . will then uniquely determine the remaining a,.

We therefore obtain in this case a solution which involves two arbitrary

constants.

For example, consider the equation

(z 2 - 1) w" + 6zw' + 4w = 0 (6-72)

Since its coefficients p and q are

6z 4

p(z) z z-1 q(z) z 2-1

we see that the only singular points of this equation are regular singular points

at z=l, z=--l, and z=_.

We know that if we seek a solution about the ordinary point z= 0 of the

form

w= _ anz" (6-73)
n=O

we will obtain a general solution to the differential equation in which the

coefficients a0 and al are arbitrary constants. And the series will converge at

least within the circle Izl< 1.

s2That v must be an integer in this case could easily be anticipated from the fact that the characteristic exponents

themselves must be integers if the solutions are to be analytic at z = z0.
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Thus, after substituting the expansion (6-73) into equation (6-72), differ-

entiating term by term, collecting terms, and factoring the coefficient of z",

we obtain

-_ n(n-1)anz"-2+ _ (n+4)(n+l)a, zn=O
rt=0 n=0

which becomes, upon shifting the index in the second sum,

- £ k(k-1)akz k-2+ _ (k+2)(k-1)ak-2Z k-2=O
k=O k=2

We now equate to zero the coefficients of like powers of z to get

0x (- 1)ao=0 l×0×al=0

and

--k(k-1)ak+ (k+2)(k--1)ak-2=O fork=2,3, • •

The first two equations merely serve to show that a0 and am are arbitrary, as

we already know. And since the coefficient of ak is not zero for k t> 2, we can

write the remaining equations as

k+2
ak-2 for k = 2, 3, . (6-74)

ak-- k

This equation shows that each succeeding ak is determined from the aj

whose subscript is 2 lower than its own. Thus, this recurrence relation will

ultimately determine the ak with even values of k in terms of a0 and the ak with

odd values of k in terms of a_. It is, therefore, convenient to consider separately

the equations for even and odd values of k. First, upon writing out these

equations for even values of k beginning with a2, we find that
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4

a2 = _ _ ao

6

a4 = -- _ a2

2(j+1)
a2j -- 2j a2j -2

Similarly, for odd values of k beginning with a3, we find that

5

a 3 = _ 3 al

2j+3

a2j+l - 2j-+ 1 a2j-1

Multiplying together both sides of the equations for even values of k and

dividing through by a2 • a4 • a6 . • a2j-2 gives

which becomes,

denominator,

[4.6.8 . . 2(j+l)]

a2j= 2 • 4 • 6 . . . 2j ao

upon removing the common factors of the numerator and
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av= (j+ 1)ao for j= l, 2, . . . (6-75)

And upon proceeding the same way for the odd values of k, we obtain

2j+3
al for j= 1, 2, . . . (6-76)

a2j+l -- 3

Since equations (6-75) and (6-76) show that the coefficients of even and

odd powers of z are given by different expressions, it is convenient to first re-

arrange the series (6-73) into two series, one containing the even powers ofz

and the others containing the odd powers. This is legitimate since every

rearrangement of a convergent powers series converges to the same sum. Thus,

equation (6-73) becomes

w= 2 avzZ'J + 2 azj+_zV+_
j=O j=O

And upon substituting equations (6-75) and (6-76) into this expression, we

obtain the general solution

w=ao (j-4-1)z2J+al z 2j+1
j=0 j=l 3

to equation (6-72). It is easy to see that both series converge in the circle

I z[ < 1 and diverge outside this circle.

In both the examples given thus far in this section, explicit expressions

for the general terms in the series were obtained. Also the recurrence relations

in both examples (see eqs. (6-59) and (6-74)) involved only two different

coefficients; whereas, in general, the recurrence relation will involve n different

coefficients (see eq. (6-37)). It is, in fact, true in general that there is little hope

of obtaining an explicit expression for the solution unless a two-term recurrence

relation is obtained. This is not necessarily a limitation on the method because

any recurrence relation can be used to successively calculate numerically as

many terms of the series as desired. In fact, it is in the cases where many-

term recurrence relations occur that the general convergence theorems are

particularly useful since, without having an explicit expression for the general

term, it is not possible to tell from an infinite series itself whether or not it is

convergent.
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6.3.2.3 Case (iii): v=O, 1, 2, . . . and a# 0.-In this case the loga-

rithmic term will be present. Notice that in case (ii) we did not include v= 0.

The reason for this is that when 1,= 0 the characteristic exponents are equal

and therefore there is only a single recurrence relation. Hence, there can only

be one regular solution of the type (6-34) and the logarithmic term must be

present in the regular solution (6-70). When v = 1, 2, . .., a will noI: be equal

to zero if, and only if, the recurrence relation (6-71) cannot be solved for a_. In

this case, no generality will be lost if we set s3 a = 1. The solution can always be

determined by substituting equation (6-70) into the differential equation, using

the fact that wl is a solution to simplify the result, and then setting l:o zero the

coefficients of the various powers s4 of z-zo to calculate the coefficients

a¢,2) recursively.

The procedure is best illustrated by considering an example. Thus, the

differential equation

ZW" -- ZW' -- W _ 0 (6-77)

has a regular singular point at z = 0 and an irregular singular point at z = _.

We know that this equation will possess at least one solution of the form

w = _ a,,z "+° (6-78)
n=0

about the point z = 0 and that this solution will converge in the entire complex

plane. Upon substituting the expansion (6-78) into equation (6-77), inter-

changing the order of summation and differentiation, shifting the indices, and

collecting terms, we obtain

n_o (n + p) (n + p -- 1)anz "+°-1 -- (n -4- p)an_lz n+°-I = 0
= /1=1

Equating the coefficients of like powers of z to zero gives for n = 0, since a0

is arbitrary,

p(p - 1) = 0 (6-79)

s3 Since w_ is detemined only to within a constant factor.

s4 The logarithmic terms will always cancel out.
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and

(n+p--1)a,=an-1 forn=l,2,... (6-80)

The roots of the indicial equation are pl = 1 and pz = 0; hence, the difference

of the roots t,= pl- p2 = 1 is an integer. First, consider the case where

p = pl = 1. The recurrence relation is (see eq. (6-76))

1
a, =- an-1 for n = 1, 2, . . . (6-81)

n

After writing out the various terms of equation (6-81), multiplying the cor-

responding members of these terms together, and dividing out common factors,

we get

1 1
= ao = aoan 1"2"3...n _..

Hence, we find that the solution for p = 1 is

1 zn+lwl = a0 _.t (6-82)
n=0

which can easily be summed to obtain

wl = aoze z (6-83)

Next, consider the case where p = p2 = 0. The recurrence relation is

(n - 1)an = a,,__. Since a0 # 0, it is clear that this equation cannot be solved

for al. Hence, the differential equation must possess a logarithmic solution.

We, therefore, seek a second solution of the form

wz = _ a_z _ -4- wl (z) In z
rt=0

(6-84)

Upon substituting this expansion into equation (6-77) and recalling that w_

satisfies the differential equation, we find that the resulting coefficient of In z
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vanishes. Then shifting the index and collecting terms in the summation gives

---wl--w, + [n(n--1)a.--nan-1]zn-l=O (6-85)
Z n=l

Hence, after substituting in equation (6-83), we get

a0(1 +z)eZ+ _ [n(n-- 1)an-- nan-1]z "-1 = 0
n=l

(6-86)

z n and then shifting the
1

But replacing e z by its series representation _..
indices shows that n=0

ao zn_l+ _" (n--l)va° Z"-'+ _ [n(n--1)an--na,_-,]z"-'=On=2 (n--2) v
• n=l " n=l

Then upon equating to zero the coefficients of like powers of z, we find that

ao = ao for n = 1

and

an-1 ao for n=2, 3, 4, (6-87)
a"--n--1 (n--1)(n--1)! " " "

where ao and al are arbitrary• Actually, we could simplify matter,_ by setting

a_=0, but we shall carry al through as an arbitrary constant :in order to

demonstrate this.

Upon writing out the first few terms of equation (6-87), we get

Ell _0

a2= 1 1 "l!

O2O0__O1O0( )a3- 2 2.2! 1.2 _.. 1+
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a3

a4-- 3 oo a, oo( 13.3! 1.2.3 3! 1+_+

Hence, we conclude by induction that

_ al ao Hn-1
a. (n--l)! (n--1)I

for n = 2, 3_, . . . (6-88)

where we have defined H,, to be the partial sum of the harmonic series. That is,

forn:0 }Hn =-' (6-89)

+_+ +...+ for n= l, 2, . . .n _
k=l

Substituting equations (6-83) and (6-88) into equation (6-84) yields

[ t ] t 11 Hn-lz n + al z n
w2=ao (ze z lnz)+l-- (n--l) v (n--1)v

n=2 " n=l "

which becomes, after shifting the indices in the sums,

w2 = ao (ze _ In z) + 1 -- -_ Hw_ n+l -t- a, _ z n+'
n=l n=O

Notice that the second sum is essentially the solution Wa. Hence, the term in

square brackets must be a solution which is linearly independent of wa. This

(i.e., the bracketed term) is the solution we would have obtained if we put aa = 0.

6.3.3 Summary

We have now shown how two linearly independent solutions to the differ-

ential equation (6-30) with analytic coefficients can be found in the neighbor-

hood of any regular singular point z0. First the indicial equation (6-39) is
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determined. If the difference v of the two roots of this equation is not an

integer (including zero), two solutions of the form (6-34) are obtained, one

for each root of the indicial equation. However, if v is an integer, the recurrence

relation (6-37) for the term a_ must be investigated with p--p2. It will either

automatically be satisfied for any a_, or it will be impossible to satisfy for any

a_. If it is automatically satisfied, ao and a_ will be arbitrary; and we will

obtain two linearly independent solutions with p=p2. If v=0 (i.e., pl=p2)

or if v is an integer and it is impossible to satisfy the recurrence relation, the

solution will have the form (6-70) and can be found by substituting this form

into the differential equation. The point at infinity is treated by making the

change in variable z= 1/_.

6.3.4 Computation of Indicial Equation

Since the nature of the solutions of equation (6-30) in the neighborhood

of a regular singular point z0 is so dependent on the roots of the indicial equa-

tion (characteristic exponents), it is useful to be able to determine this equa-

tion without first finding the expansions (6-31) and (6-32) of the coefficients

about z0.

Equation (6-39) shows that this is accomplished once p0 and q0 are known.

But it follows from equations (6-31) and (6-32) that

(z-zo)p(z) =po+ pk(z-zo) k
k=l

(Z--Zo)2q(z)=qo + _ qk(z--zo) _
k=l

Hence,

po = lim [ (z--zo)p(z) ] and qo = lim [ (z-zo)2q(z)]
Z'--_ ZO Z --_ gO

Thus, for example, the equation z2w"+ z(2 + 3z)w' + (1 --z)w= 0 has a regular

singular point at z = 0 and

2+3z 1 --z
-- and q(z)- z2p(z)= z
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Hence,

(2z3Z)po = lim z _ = 2 and qo = lim z 2 = 1
z-*0 z-_0

and the indicial equation (6-39) is

p2+ (po-1)p+ qo= p2 + p+ ]=0

If the regular singular point zo is the point at infinity, we make the change in

variable z= 1/_ and investigate the point _= 0. This leads to the relations

1

qo = lim g2 q
g--*0

And upon changing back to the original variable z, they become

po = lim [2 -- zp (z) ] and qo = lim z_q (z)
Z---._ _ Z-....._ ¢x_
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CHAPTER7

Riemann-PapperitzEquationandthe
HypergeometricEquation

7.1 THE FUCHSIAN EQUATION

Having shown how to construct solutions to a differential equation with

analytic coefficients about its regular singular points, it is natural to study

those equations whose only singularities (in the extended plane) are regular

singular points. Such equations are called Fuchsian equations. We shall restrict

our attention to Fuchsian equations of the second order; that is, equations of

the form

w" + p(z)w' + q(z)w=O (7-1)

This equation can have, at most, a finite number of singular points. In order to

prove this, notice that since the only singularities of the coefficients p and q in

the extended plane are poles, these functions must be rational (see section

5.4). But since the number of singularities of a rational function which occur

at finite points of the plane is equal to the number of distinct zeros of its poly-

nomial denominator, it follows that p and q have, at most, a finite number of

singular points. However, every second-order equation must have at least one

singular point. For if equation (7-1) had no singularities in the extended plane,

the coefficients p and q would be everywhere analytic; and, hence, by Liou-

ville's theorem, they would be constahts. However, even if the constant value of

p were zero, the coefficient 2z--z2p(z) of the transformed equation (see

eq. (6-28)) would still have a simple pole at infinity. But this would contradict

the assumption that equation (7-1) had no singularities. Hence, we conclude

that this equation must have at least one singularity.
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Since the rational function p has, at most, simple poles and the rational

function q has, at most, poles of order 2, it is clear that any Fuchsian eauation

with not more than m singular points in the finite plane must have coefficients

of the form

P(z)
.. (z-zm)

O(z)
q(z)- (z_z,)2(z_z2)2 . . (Z_Zm) 2

where P and Q are polynomials.

7.1.1 Fuchsian Equations With, at Most, Two Singular Points

There are two possible forms which a Fuchsian equation with, at most,

two singular points can have. First, consider the equation which has, at most,

one singular point in the finite plane (with a possible singular point at infinity).
Its coefficients must take the form

p(z)-- P(z) q(z)-- Q(z)
z--a (z--a) 2

But if the coefficients of the transformed equation 2z-z2p and z4q are to have

at most a simple pole and, at most, a pole of the order of 2, at infinity the

polynomials P and Q must both be constants, say//andB, respectively. Hence,

the differential equation must be of the form

,4 B
w" +--w' + w= 0 (7-2)z--a (z--a)2

Next, consider the case where the singular points are both in the finite

plane. Then the coefficients must be of the form

P(z)
P= (z a)(z-b)

Q(z)

q= (z--a) 2(z-b) 2

But the coefficients 2z -- z2p and z 4 q of the transformed equation will be analytic
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at z---- oo only if there are constants C and D such that P = 2z + C and Q -- D.

Hence, in this case the differential equation must be of the form

2z+ C D
w"+ w' + w = 0 (7-3)

(Z-- a) (z-- b) (z-- a) 2 (z-- b) 2

Thus, a Fuchsian equation which has, at most, two singular points must be

either of the form (7-2) or of the form (7-3). It is easy to verify that the

general solution of" equation (7-2) is

_C1 (z - a)p, + C2 (z - a) p2
w

[.(z-a)pl[Cl+C2 In(z-a)]

if (,4 - 1) 2 __ 4B # 0

if (,4 -- 1)2 _ 4B = 0

where C1 and C2 are arbitrary constants and pl and p2 are the roots of the

indicial equation p2--l-(,4--1)pA-B=O. Since the change in independent

variable t = 1/(z- b) transforms equation (7-3) into an equation of the form

(7-2), it follows that the general solution to equation (7-3) can also be ex-

pressed in terms of elementary functions.

Thus, the solutions of any Fuchsian equation which has no more than

two singular points in the extended plane are elementary functions.

7.1.2 Fuchsian Equations With, at Most, Three Singular Points

In order to obtain a Fuchsian equation whose solution is not elementary,

we must consider an equation which can have three regular singl,lar points.

If we require first that these three points, say a, b, and c, all lie in the finite

plane, the coefficients of the differential equation must have the fo:rm

p(z) = P(z)
(z -- a) (z -- b) (z -- c)

q(z) = Q(z)
(z_a)2(z- b)2(z- c)2

where P and Q are polynomials. And since the point z = oo is to be an ordinary

point, the coefficients of the transformed equation

z2P z4Q
2z - and

(z-- a)(z-- b)(z- c) (z- a)2(z - b)2(z -- c) 2
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must be analytic at z = oo. But this can occur only if P and Q are quadratic in

z and the coefficient of z 2 in P is 2. Since the degree of the numerator is less

than the degree of the denominator, it follows from the elementary theory

of partial fractions that there exist constants Aa, Ab, Ac, Ba, Bb, and Bc such that

P(z) Aa + A_.L + A.____c
(z-a)(z--b)(z-c) z-a z-b z-c

and

Q(z) Ba + Bb + B
(z-a)(z-b)(z-c) z-a bz- z-c

The differential equation, therefore, takes the form

d2w. ( Aa Ab A c) dw+ z--b

z_+ (z_a)(z_b)(z_c)-O (7-4)

And since the coefficient of z z in P(z) must equal 2, it follows that

Aa + Ab + Ac= 2 (7-5)

Otherwise the constants Aa, Ab, Ac, Ba, Ba, and B_ are arbitrary.

Now at each of the points a, b, and c there is a pair of characteristic

exponents, say (od, cd'), (/3',/3"), and (T', 3'")s5 respectively. In order to find

a relationship between these exponents and the A's and B's, notice that since

po = lim (z -- a)p(z) = limz_.o[Aa + Ab (_--b)Z-- a -4- Ac (Z_--_)]Z-- a = Aa

a_ The pairs (o_', a"), (/3', fl"), and (T', T") are solutions of the indicial equations at the points a, b, and

c, respectively.
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qo = lim a, q(z,-- ['a +'c (z -- b) (z - c)

Ba

(a-b)(a-c)

at z---- a, the indicial equation at this point is

B_

P2+(A_--l)P+(a_b)(a_c)--O

But it follows from the properties of the roots of quadratic equations that the

roots _e' and oe" of this equation satisfy the relations

oe' + oe"= 1 --A,, oe'oe"= Ba
(a - b) (a --c)

And we can show in exactly the same way that

fl' + fl"= l--Ab fl, fl,, = Bb
(b-a)(b-.c)

3" + T"= 1 --A_
Be

v'v"- (c - a) (c- b)

Upon using these relations to eliminate the A's and B's :in equation (7-4),

we arrive at the Riemann-Papperitz equation

d2w+ (1 -- a'- a"
_Z 2 z -- a\

1-fl'-fl" 4-
z-b

1 --T'--T"_ dw+ [a'oe" (a--b) (a-c)
z--c "] _ [ z--a

+fl'fl" (b--a) (b--c)
z-b

T'T" (c -- a) (c -- b).-] w
t- jz-c (z-a) (z--b) (z--c) 0

(7-6)
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Eliminating the A's in equation (7-5) shows that the characteristic ex-

ponents at the singular points of equation (7-6) satisfy the relation

o/+ o/'+ fl' + fl"+ ",/+ 'y"= 1 (7-7)

More generally, the sum of all the characteristic exponents at the singular

points of any second-order Fuchsian equation is two less than the number of

such points. This relation is called the Fuchsian invariant for the equation of

order2.

In a similar way, it can be shown that if a Fuchsian equation with, at most,

three regular singular points, has one of these points, say c, located at z = _,

this equation must be of the form

d2w+( l - °/-¢x'dz_ z-- a _- l--B'--B" ) dWz_b dz

(a-b) 4_ (b-a) ] -0 (7-8)+ L z-- a z-- b F-T'T" w(z-- a) (z-- b)

where T' and T" still denote the characteristic exponents at c and equation

(7-7) still holds. Since equation (7-8) can be obtained by formally taking

the limit c---> oo in equation (7-6), we can say that equation (7-6) holds even

when ¢= oo. Then with this understanding, equation (7-6) is the most general

Fuchsian equation which has, at most, three singular points.

7.2 RIEMANN P-SYMBOL

When w is a solution of the Riemann-Papperitz equation whose singulari-

ties occur only at the distinct points a, b, and c, we shall sometimes write

b cw = ' fl' T'

\a" B"

(7-9)

The right side of equation (7-9) is called the Riemann P-symbol. The char-
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acteristic exponents of the differential equation are listed below the correspond-

ing singular point. (Any of the singular points can be at infinity.) These ex-

ponents must, of course, satisfy the Fuchsian invariant

a' + a"+/3' +/3"+ T' + "/'= 1

Finally, the independent variable is located in the fourth column.

If we interchange any of the first three columns in the P-symbol (7-9),

the notation still refers to the same equation, There are 3!=6 ways in which

this can be done. Similarly, interchanging the order of the exponents in any

given column leaves the meaning of the symbol unchanged. Thus, for each

arrangement of the points a, b, and c, there are eight arrangements of the

exponents. Hence, there are 6 × 8 = 48 different P-symbols which refer to the

same equation and, therefore, have the same meaning.

We shall now show that

(7-10)

when a, b, and c are finite and

f b oo

a' /3' _/'

', /3,, _/"

= (z--a) k '--k /3' T'+k

k /3"

(7-11)

when c = oo.

Equation (7-10) means that if w is a solution of a Riemann.Papperitz

equation and if we make the change of dependent variable

[Z -- a'_ k

w=_-_--_) u (7-12)
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in this equation, then the transformed equation (which has u as the dependent

variable) is also a Riemann-Papperitz equation and the location of the singular

points is left unchanged by this transformation. However, the ,.,mracteristic

exponents at the points a and c are altered in the manner indicated by the

symbols. Equation (7-11) is the corresponding transformation for the case

where one of the singular points is at infinity.

In order to prove that equation (7-10) holds, we first substitute equation

(7-12) into equation (7--6). Then upon noting that

w a kEu+ c, u]\"ZZ_--c} (z--a) (z--c)

[u,+2,(zlo k(a-c) k(______1 k+l]u ](z-a) (z-c) a z-c/

and

(z-a) (z-c) (z-k) = (z-a) (z-b) (z-c) 1 z_--_ ]

fork=a, b, orc

we find after combining terms that

d2udz 2 + (.1 -- o_' -- c_"+ 2k_+ 1 --,8'z--a z--b --_ "+ 1--T '--y"--2k) duz--c ' "_z

+ [ (c_' -- k) (o/'--k)z_a(a--b) (a--c) +_'ff' (b-a)z_b (b--c)

+ (y'+k) (y"+k) .(c-a) (c-b).] u
z- c J (z-- a) (z-- b) (z- c)

=0

But comparing this with equations (7-6) and (7-9) shows that equation

(7-10) holds. Equation (7-11) follows from equation (7-8) in the same way.
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Having considered the transformations of the Riemann-Papperitz equa-

tions under a change of dependent variable, we shall now show how this equa-

tion transforms under a change of independent variable. In this case, the

change of variable which transforms a Riemann-Papperitz equation into another

Riemann-Papperitz equation is the nonsingular linear fractional transformation

Az+ B

t= Cz+D where AD--BC # 0 (7-13)

studied in chapter 5.

It is again convenient to describe this transformation in terms of the Rie-

mann P-symbol. Thus, if t is the change of variable (7-13), then

P ' 13' T' =P ' /3' T'

\.,, fl,, ¢, \.,, fl,, y, /

(7-14)

where al, bl, and Cl are the images of the points a, b, and c, respectively, under

equation (7-13). For example,

Aa+B

a_=ca+ D

In order to prove equation (7-14) we first recall that (see section 5.3) per-

forming the transformation (7-13) is equivalent to performing in :succession

not more than four elementary transformations, each of which has one of the
forms

t= lz (7-15)

t=k+z (7-16)

1

t= z (7-17)

It can now be verified, by substituting in turn each of equations (7-15) to (7-17)
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into equation (7-6), that in each case the transformed equation is a Riemann-

Papperitz equation with the same characteristic exponents as equation (7-6)

and that the singular points of the transformed equation are the images under

the transformation of the original singular points. Hence, equation (7-14) holds

for each of the elementary transformations (7-15) to (7-17). But since the

general nonsingular linear fractional transformation is equivalent to performing

a succession of these transformations, it is clear that equation (7-12) must hold

for this transformation also.

7.3 TRANSFORMATION OF RIEMANN-PAPPERITZ EQUATION INTO HYPER-
GEOMETRIC EQUATION

We shall now show that the general Riemann-Papperitz equation (7-6)

can always be transformed by the application of a number of transformations

(each of which has one of the forms (7-10), (7-11), and (7-14)) into a certain

standard equation (canonical form). The usefulness of this result is principally

due to the fact that the transformed equation, which has a regular singular

point at the origin, has a two-term recurrence relation at this point. As we have

seen, this allows us to find an explicit expression for the series solution.

In order to accomplish this reduction let w be any solution to equation

(7-6). Then

(: b cw=P ' fl' T'

\a" fl"

where we suppose that the notation has been so arranged that a and b are

always finite. We first introduce the new dependent variable v by

[(z--a_ '_'

w l\Y=-d--c] v if c#= (7-18)

(z-- a) _'v if c =

and then use equation (7-10) or (7-11) to show that
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t! _ ! b C t

1)= P B" _/' + c_' z

\a - ot fl" "v+ or'

(7-19)

We again change the dependent variable by using the transformation

z-b_'u ifc#_

\z-c/

(z-b)_' u ifc=c¢

(7-20)

and then apply equation (7-10) or (7-11) to equation (7-19) to show that

a b c /u=P ,0 , 0 T'+o_'+/3' z
(7-21)

Now let us use the linear fractional transformation (discussed in section

5.3) which maps the points a, b, and c into the points 0, 1, and _, respectively,
to change the independent variable. Thus, a new independent variable t is

introduced by

Zb__aa) b-c, (7-22)

(When c=_, we understand t to be the limit of this expression as c---_ w,

which is simply the first term in the right-hand member.) And in view of equa-

tion (7-14) it follows from equations (7-21) and (7-22) that

0 1 o¢ '_u= P 0 , 0 T' + o_'+/3'

(7-23)
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The transformations (7-18_. (7-20), and (7-22) can now be collected into

the single formula

w(z) =

z-- a_ _' (z-- b_ _'

\_--c} \z--c/ u(t)

(z--a) _' (z--b) _' u(t)

t (z--a_ b--c

z--a
t= forc=_

b--a

forc# _

(7-24)

The function u given in equation (7-23) is the solution to a Riemann-Papperitz

equation which has only four nonzero exponents. Since the sum of these ex-

ponents is unity, they can be characterized by three constants, say a, fl, and

T. It is customary to define these constants by

a=a'+fl'+y' fl = a' + fl' + T" ?= l +a'--a"

<7-25)

Then equation (7-23) can be written as

l1 1 _ )
u=P 0 0 a (7-26)

But comparing equations (7-8), (7-9), and (7-26) shows that the Fuchsian

equation satisfied by (7-26) is

d2u F1- (l--T)

dt---5 + [ t ] u+ t--1 ---d[+ + +aft t(t- 1)
=0

And upon rearranging this equation slightly, we obtain the hypergeometric

equation of Gauss,

d2u ,

t (1--t)--d-_--t- [T- (a+fl+ 1) t] -_-du-aflu=O (7-27)

Its solutions, which will be obtained subsequently, have been extensively

studied.

212



RIEMANN-PAPPERITZANDHYPERGEOMEI'RICEQUATIONS

We have, therefore, shown that any Riemann-Papperitz equation can be

transformed into the hypergeometric equation (7-27) by introducing a change

of variable of the type (7-24).

Hence, once the solutions to the hypergeometric equation (7-27) have

been found, we can find the solutions w to any Riemann-Papperitz equation

simply by using the transformation (7-24) to express them in terms of the solu-

tions to the hypergeometric equation.

However, in any specific case, it is usually more convenient to rederive

this transformation by using the Riemann P-symbol. Thus, consider the

Riemann-Papperitz equation

2z2(z-2)w '' -z(3z-2)w' +2(z- 1)w= 0 (7-28)

For this equation,

3z-2 z- 1

p(z)- 2z(z-2) q(Z)-z2(z-2)

Hence, its singularities are located at the points z= 0, z = 2, and z= _.
At z=0

3z-2 ] 1po = lim - , qo = lim z- 1 _ 1
z_0 2(z-2) =-2 z_0z-2 2

and, therefore, the indicia1 equation at this point is (see eq. (6-39))

3 1

p2- p+ =0

The roots of this equation are 1 and 1/2.

At z=2

P0 = lim

z--*2
3z--22z )=--1 qo= limz__,2(z--2) (z-- 1)--0z2

and, therefore, the indicial equation is

p2 _ 2p = 0
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The roots of this equation are 2 and 0.

At z=_

P°= limz--,=[2-zp(z)]=hjrn[ 2+ 3z--2 ]_72(z-2) 2

q0 = lim z2q(z) = lim z- 1 _ 1
z_ z-_ z-- 2

and, therefore, the indicial equation is

5

p2+_p+l
=0

The roots of this equation are -1/2 and- 2. Hence, the solutions to equation

(7-38) can be denoted by

w=P (i 22 --1/2

/2 0 -2

It now follows from equation (7-11) that

0 2 _ zt

w = zl/2P 0 0 0

\1/2 2 -3/2

And it can be concluded from equation (7-14) that

w = zl/2P 0 0

2 -3/2
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where t = z/2. But upon comoarin_ this with equation (7-26), we see that

3 1

a= 0 /3- 2 T=2 (7-29)

Thus, the solutions to equation (7-28) can be expressed in terms of the solu-

tions to the hypergeometric equation (7-27) with the constants a, /3, and T

given by equation (7-29).

7.4 HYPERGEOMETRIC FUNCTIONS

It remains to determine the solutions to the hypergeometric equation

(7-27). We shall- first seek a solution about the regular singular point z= 0.

Since the P-symbol for equation (7-27) is given by equation (7-26), it follows

that the characteristic exponents at z = 0 are 0 and 1- y. Suppose first that Y

is neither zero nor a negative integer. Then the methods developed iLnchapter 6

can be used to obtain a power series solution s6 of the form

u= ___ a,t" (7-30)
n=O

which corresponds to the characteristic exponent zero. Upon substituting this

into equation (7-27), collecting terms with like powers of t, and shifting the

index n, the lowest one present, we obtain

_'=o n(T + n-1)a't'-l-= ,=1 (a+ n--1) (fl + n-1)an-lt" -l=O

Hence, the n= 0 term shows that a0 is arbitrary and we obtain the two-
term recurrence relation

(a+n--1)(fl+n--1)
a,-- a,-1 for n = 1,2, . . . (7-31)

n(T+n--1)

where the division by n(T+ n-1) is permitted since we have required that T

be neither zero nor a negative integer and, therefore, the denominator can never

vanish. Upon writing out equation (7-31) for successive valuers of n, multiply-

ing the corresponding members of these equations together, and dividing

s6 Recall that it was shown in section 6.3 that the power series solution corresponding to the largest characteristic

exponent always exists.
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out common factors, we find that

[o_(a+l) . . (c_+n--1)]_(#3+l) . (fl+n--1)]

a.= n![T(T+ 1) . (T+n--1)] a0

And by using the generalized factorial function defined in equation (5-33),

this can be written in the more concise form

Hence, the solution (7-30) is

u= a0F(tl, fl; T; t) (7-32)

where we have put

F(ti, #3; T; t) = _ t"
.=0 n!(T).

forT#O,--1,--2, . . . (7-33)

The function F(ti, _; T; t) is called the hypergeometricfunction, and the

notation used herein is universally accepted. The reason for calling this

function the hypergeometric function is that when a= 1 and _I=T, this series

(7-33) reduces to the geometric series. Thus,

1
F(1, _/; T; t)=1-t

In fact, it follows from the binomial theorem that

1

F(a, T; T; t)=F(T, a; T; t)= (l_t)< , (7-34)

for any number a.
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Notice that if either a or fl is zero or a negative integer, the series (7-33)

terminates after a finite number of terms and, therefore, represents an entire

function. In all other cases, a simple application of the ratio test (ref. 23) will

suffice to show that it converges in the circle ]tl < 1 and diverges outside this
circle.

We have, therefore, shown that, provided T is neither zero nor a negative

integer,

u= F(a, fl; _/; t) (7-35)

is a solution to the hypergeometric equation

t(1 - t)u" + [y- (a+fl+ 1)t]u' -- aflu= 0 (7-36)

at least in the circle Jtl < 1.

Since equation (7-36) is a Riemann-Papperitz equation, its solutions u

can be denoted by the P-symbol

0 1 oo /

u=P 0 0 a t

fl

(7-37)

Also, inasmuch as the order in which the exponents are listed in a given column

is immaterial, we can interchange those in the first column to obtain

0 1 oo /

u= P -T 0 t_ t

0 "r- -fl fl

Hence, it follows from equation (7-11) that
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70 1 oo t/

u = t 1-_P 0 0 a + 1 -- 7 (7-38)

--1 7--a--/3 /3+1--7

Notice that the P-symbol in equation (7-38) is in canonical form. It, there-

fore, denotes a solution to the hypergeometric equation whose exponents at

the points 0, 1, and oo are 0, 7-1: 0, 7- a -/3; and a + 1 -- 7,/3 + 1 - 7, respec-

tively. And we can choose this solution to be the hypergeometric function F.

Hence, upon comparing equations (7-35) and (7-37) with the P-symbol in equa-

tion (7-38), we find that

u=t_-*F(a+l-7,/3+1-7; 2-7; t) (7-39)

is also a solution to equation (7-36) provided, of course, 2-7 is neither zero

nor a negative integer. Since the hypergeometric series converges for It[ < 1,

the function (7-39) must satisfy the differential equation in this region. Notice

that if 7 = 1, the solutions (7-35) and (7-39) are identical. In fact, equation

(7-37) shows that, in this case, equation (7-36) has equal exponents at t= 0

and, therefore, one of the solutions composing the canonical basis at t = 0 must

contain logarithmic terms. Next, if T is any integer other than unity, either

7 or 2--7 is either zero or a negative integer. Thus, either the hypergeometric

function (7-35) or the hypergeometric function (7-39) is undefined. The remain-

ing equation provides a solution to the differential equation. Finally, if 7 is not

an integer, both equations (7-35) and (7-39)are solutions to the differential

equation in the circle [t[ <1. Since the series expansion for equation (7-35)

begins with t o and that for equation (7-39) with t 1-_, they must also be linearly

independent solutions.

Interchanging the exponents in the second column of equation (7-37) leads

in the manner described above to the solution

u= (t-1)_-a-_F(T-/3,T-a; 7; t) (7-40)

in the domain It[ <1. And interchanging both the exponents in the first column
and those in the second column leads to a fourth solution

u=t'-_(t--1)_-a-_F(1--_, l-a; 2-7; t) (7-41)
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in the domain Itl < 1. But, at most, two of these four solutions can be linearly

independent. If T is not an integer, there exists a linear relation connecting

any three of them. And, if y is an integer, the two solutions which exist can differ

only by a muhiplicative constant.

Another set of four solutions can be obtained by interchanging the points

0 and 1 by means of the transformation z-- 1 - t. Thus, for example, equation

(7-37) is equivalent to the equation

1 0 oo t/

u=P -a-/3 1 -y a

0 0 /3

Upon applying equation (7-11) to this equation twice in succession, we obtain

(1 0 i)u= ( t -1) v-_-_tl-vP 0 0 1--/3

\a+/3--T V--1 1--a

It now follows from equations (7-13) and (7-14) that the transformation z = 1 -- t

maps the points 1, 0, and oo into the points 0, 1, and oo, respectively, and leads

to the expression

a 0 1 oo

u= ( t -1) v-_-_tl-vP 0 0 1-/3 1--

+/3-7 T--1 1-a

Since this P-symbol is in canonical form, it represents a solution to a

hypergeometric equation which we can again choose to be F. Thas, we find

after comparing exponents with equations (7-35) and (7-37) that

u= (t-1)v-a-_tl-vF(1-/3, 1-a; 1+7-a--/3; l-t) (7-42)
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Notice that the hypergeometric series in the solution (7-35) converges in

the circle ]t] < 1, while that in the solution (7-42) converges in the circle

It-11 < 1. By systematically exploiting the technique used above, Kummer

(1810 to 1893) obtained 24 solutions to the hypergeometric equation (7-36),

each of which is expressed in terms of the hypergeometric function F. In

each of these solutions the variable is one of the quantities t, 1--t, (t--1)/t,

t/(1--t), 1/t, and (l--t) -1. Since the function F with variable t converges

in the unit circle It[ < 1, these solutions will converge in one of the regions

shown in figure 7-1. Each series will converge in the appropriate shaded region

and diverge outside it unless the series terminates; in which case, it will

converge in the entire plane. Of the 24 solutions, four converge in each of

the regions shown. Of course, only two solutions can be linearly independent

in any given region. Some of the regions shown in the figure overlap. Hence,

there are numerous relations among the various 24 solutions obtained by

Kummer. These relations not only provide useful identities among hyper-

geometric functions but also provide formulas which can be used to ana-

lytically continue the solutions of the Riemann-Papperitz equation from one

region of the plane to another. Thus, it can be shown, for example, that when

T is neither zero nor a negative integer, the identity

F(a,/3; T; t)= (1-t)v-_-_F(Y--a, Y--/3; T; t) (7--43)

holds in the domain [tl < 1. An example of an identity which holds in the inter-

section of the regions shown in figures 7-1(a) and (b) is

F (t_,_; y; t)= (1-t)-_F(a, y-/3; y; t l__l) for Itl < 1 and Itl < I1- tl

It is frequently convenient to express the hypergeometric function as an

integral. This can be done when _ 3' > _/3 > 0 and ]t[ < 1. In order to arrive

at this result, we substitute equation (5-35) into equation (7-33) to obtain

F (3') ((_). r (/3+ n)
F ((_,/3;3";t)=F---_ n[ F (3"+n) t" (7-44)

n=0

220



RIEMANN-PAPPERITZANDHYPERGEOIVIETRICEQUATIONS

(a) (b)

2=t 9,_t

(c)

_,wt

(e)

(a) The region 0 _< Itl < l.

L #,=t

(d)

(f)

(b) TheregionO< Jll<].

(c) The region 0 _< l1 - tl < l.
(d) The region 0< _-tl < l.

(e) The region 0 _< It--_l < 1. (f) The region 0 _< IL-_I < 1.

FIGURE 7-1.-Regions of convergence for hypergeometric series.
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Since it follows from equations (5-37) and (5-38) that

F (/3+n) r (_-/3)

r (y+n) =B (fl+n, y-fl)= fj

equation (7-44) can be written as

r(_)
F (a, fl;y;t)=F(fl) F (y-fl)__o

Upon interchanging

5.6), we find that

7-B+n-1 (1 - r)'-_-ldr

for :Y_T >9g fl > 0

the

_!"t. f_ _+,,-1 (1 -- ¢) v-t_-ldr

order of integration and summation (see

fO o¢ O_
X-"(_)"

F (a, fl; y; t)= r(fl)r(Y)F(-y--fl) _-'(1---r)'/-B-' nX.,=on! (tT)"dz

section

But the series can be summed by using equations (7-33) and (7-34) to obtain

the integral representation

_.t_-, (1 - z) v-t3-i (1 --'rt) -"dr

for _y > _fl > 0 and It] < 1

F (a, fl; y; t) = r(y) for(#) r (_-#)

which was discovered by Euler. Since this integral exists and represents an

analytic function for all values of t except where t is real and larger than 1,

it provides an analytic continuation of F((_, /3; Y; t) from the unit circle

Itl < 1 to the entire t-plane cut along the positive real axis. Barnes obtained

the more general integral representation

F (a,/3; Y;t)= 1 F(T) _= F (a+z) F (fl+z) F (--z) (--t)_dz2rri r((_) r(/3) L_® r (y+z)

where larg (-t)l < ¢r and the integration is to be carried out along any path

which lies to the right of the poles of F(a+z) F(/3+z) and to the left of the

poles of F(--z).
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The six functions F(c____ 1,/3; Y; t), F(a,/3___ 1, T; t), and F(a,/3; T-- 1; t)

are said to be contiguous to F(a,/3; T; t). Gauss proved that there is a linear

relation between F(a, /3; T; t) and any two of its contiguous functions, the

coefficients being linear polynomials in t. Some examples of these relations are

y(1 -t)F(a,/3;-/; t) = (/3-y)tF(a,/3; T+ 1; t) + yF(o_-- 1,/3; T; t)

(/3-a)F(a,/3; T; t) =/3F(o_,/3+ 1; T; t) ---_F(a + 1,/3', 3';, t)

The derivative of a hypergeometric function is also a hypergeometric

function. In order to show this, notice that the series (7-33) can be differentiat-

ed term by term within its circle of convergence to obtain

dF _] (a).(/3),,t"-'
dt = (y).(n- 1) v

n=l °

Upon shifting the index by putting k= n--1, this becomes

dFdt= _=0 (C_)k+l(/3)k+,_! tk

But since it follows from definition (5-33) that (a)k+l=a(a+l)_,

/3(/3+1)k, and (y)k+l=y(y+l)k, equation (7-45) shows that

(7-45)

=

dF(a,/3; _/; t) a__ F(a+l,/3+l;y+l;t)
dt Y

(7-46)

More generally, the Jacobi identity

d"[t_+"-_Fto_ /3; T; t)] = (ol),t_-aF(a+ n, /3; T; t)
dt, L --, ,

(7-47)

can be established by muhiplying both sides of the identity by t _-'_ and then

verifying that the left side satisfies the hypergeometric equation with param-

eters a + n,/3, T.
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There are many other relations connecting the hypergeometric functions.
The reader can find these tabulated in reference 26 and discussed in some

detail in reference 27. Many of the known functions, such as the elliptic inte-

grals of the first and second kind, the inverse sine, etc., can be expressed as

hypergeometric functions.

7.$ GENERALIZED HYPERGEOMETRIC FUNCTIONS

The concept of hypergeometric function can, itself, be generalized. To

this end, notice that in the definition of the hypergeometric function

(o/).(/3)n_.

the numerator and denominator of the coefficient of z'/n! contain only products

of generalized factorial functions. Hence, it is natural to define the generalized

hypergeometric function ,zFq by

pFq(o/1, O/2, ., O/p;')/1,'Y2,• • -, "_q;Z) = _ (o/1)rt(o/2)n• • • (o/p)n_n
n=On! (Yl)n (Y2)n • • . (Yq)n

(7--48)

provided the series converges, s7 The numbers p and q are nonnegative integers

which denote the number of parameters in the numerator and in the denomi-

nator, respectively. Thus, the ordinary hypergeometric function F is a zF1.

Since the parameter /3 cancels out in the numerator and denominator in

equation (7-34), we see that

1
-1Fo (o/; --;t)

(l-t)-

where we indicate that there is no parameter in the denominator by

inserting a dash. The function 1Fz is treated in the next chapter. The generalized

hypergeometric functions are studied in considerable detail in reference 27.

s7This series will always converge in the unit circle if q = p + 1, and it will converge in the entire plane if q > p + 1.

The other cases are more complex.
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7.6 LOGARITHMIC SOLUTION TO HYPERGEOMETRIC EQUATION

We have found two linearly independent solutions to the hypergeometric

equation (7-36) in a neighborhood of t=0 for the case where y is not an

integer. However, when y is an integer, only one solution has been found.

The remaining solution can be found by the methods of chapter 6. Thus, for

example, when Y is a positive integer, ui=F (a, fl; T; t) provides one solution

to the hypergeometric equation (7-36); and the methods of chapter 6 show

that if neither a nor fl is a positive integer smaller than T, a second linearly

independent solution is given by

v-2 n[ (1- y).+l t_(n+l )
u2=F (c_,fl;y; 1)lnt-- _] (1--a).+,(1--fl).+,

n=O

+_] (a)"(/3)"[H(o_,n)+H(fl, n)-H(T,n)-H(1 n)]t"
.=, n! (T)n

where the finite sum is to be omitted when T= 1 and we haw; put ss

n-1 l
H(c_. n) --= _ c_+k

k=O

We can obtain the second solution for the case where Y is :r.ero or a negative

integer in the same way by starting with the solution

ul=tl-_F(o_+ 1 -% fl+ 1 -Y; 2-y; t)

7.7 SPECIAL RIEMANN-PAPPERITZ EQUATIONS

The classical Jacobi differential equation

(1--Z2)W"-k - [b--a-- (a+b+2)z]w'+n(n+a+b+l)w=O (7-49)

SSThefunction defined in eq. (6-89) is identical to H(1, n).
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is a particular Riemann-Papperitz equation with singular points at z------1, oo.

It is readily established that in this case

w=P 0 0 -n

-a -b n+a+b+l

(7-50)

This equation can be put into canonical form by the change of independent

variable t= (l--z)/2. Thus,

w=P 0 -n

-- -b n+a+b+l

Therefore, when a is not a negative integer, a particular solution wl to the

Jacobi differential equation is

(7-51)

Equation (7-51) satisfies the differential equation within the circle II-zl < 2

for all values of the parameter n. But if n is a nonnegative integer, the hyper-

geometric series terminates after a finite number of terms. For such values of

n, the Jacobi polynomial is defined as

_a'b)(z)-(a+n!l)" F (- n,n+a+b+ 1;a+l ;L_if_z) for n--0, 1,2, . . .

(7-52)

A convenient expression for these polynomials is provided by the Rodrigues

formula

p(a,b)(z)_ (-- 1)" (l_z)_a( 1 + z)_bd" [ (1 --z)a+"(1 + z) b+"]---n clz (7-53)
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This formula was obtained for the special case of Legendre polynomials (in-

troduced below) by Olinde Rodrigues in 1816. In order to derive this result,

we use equation (7-34) together with the Jacobi identity (7-47) to show that

dn

t-a(1 --t)-b-_ [(1--t)b+"t "+"]

n

=t-_(1 --t)-b-3-_._ [t_+'F (a+ 1,-n-b; a+ 1" t)]dt

- (a+ 1),,(1 --t)-bF (a+ l+n,-n--b; a+ 1; t) (7-54)

But it follows from equation (7-43) that

(1--t)-bF (a+ l + n,--n--b; a+ l; t)=F (--n,a+ l + n+ b; a+ l; t)

Hence, after substituting this into equation (7-54) and making the change of

variable t= (l--z)/2 in the resulting expression, we find, upon comparing the

result with definition (7-52), that the Rodrigues formula (7-53) holds.

A number of important equations which have been extensively studied

are special cases of Jacobi's equation. Thus, when a = b, equation (7-49)

reduces to the ultraspherical differential equation

(1-z 2) w"--2 (a+l) zw'+n (n+2a+l) w=U (7-55)

A solution to this equation is given by equation (7-51) with a= b. But,

when n is a nonnegative integer and the series terminates, 89 it is customary to

use a different normalization factor from the one used in equation (7-52) and

to express the solution in terms of the Gegenbauer polynomial

(2a).

C'_(z) =( o_+_--]-),, P_t.-('/_),_-(,/,)l(z)

(7-56)

so The polynomial obtained directly from eq. (7-52) with a= b is sometimes called the ultraspherical

polynomial.

227



DIFFERENTIALEQUATIONS

where we have put a= a+ (1/2).

The Tschebychev equation

(1 -- z2)w '' -- zw' + n2w = 0 (7-57)

is, in turn, a special case of the ultraspherical equation (7-55) with a=

-1/2. One solution to this equation is therefore given by equation (7-51)

with a=b =-1/2. However, when n is a nonnegative integer, it is again

customary to change the normalization and define the Tschebychev polynomial

(of the first kind) Tn in terms of the Jacobi polynomial (or ultraspherical poly-

nomial) by 9o

n!

1

,4 Another important special case of the ultraspherical equation occurs

when we put a = 0 to obtain Legendre's equation

(1-z z) w"-2zw'+n (n+l) w=0 (7-58)

One solution to this equation is given by equation (7-51) with a=b=0.

Thus, we define the Legendrefunction ofthefirst kind P, by

_ I--z)P,(z) =F n, n+ 1; 1; _ (7-59)

And since this function is a polynomial when n is a nonnegative integer, it is

then called the Legendre polynomial. Thus, the Le_endre polynomial is a Jacobi

polynomial with a = b --=0.

A second (suitably normalized) linearly independent solution to equation

(7-58) about z = 1 is called the Legendre function of the second kind and is

denoted by Q,. If n is an integer, Q, will involve logarithmic terms.

Notice that Legendre's differential equation (7-58) (and, in fact, more gen-

erally, the ultraspherical differential equation (7-55)) is invariant when z is

replaced by-z. This suggests that we transform equation (7-58) by introducing

a0 It is not hard to show that T. satisfies the relation T. (cos 0)= cos n O, and this relation is often used to define

this polynomial.
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the new independent variable t = z 2. The equation then becomes

2t(1-t) anw+ (1-3t) dw+l
dt 2 dt -_ n(n-4-1)w=O

But this is again a hypergeometric equation whose parameters a, B, and T are

now -(1/2 )n, (1/2)(n+ 1), and 1/2, respectively. And since 31 is not an inte-

ger, we can conclude from the results of the preceding section that this equation

has two linearly independent solutions wl and w2 about t = 0 which are given by

equations (7-35) and (7-39), respectively. Thus,

_n n+l 1 )wl=F 2' 2 ' 2' z2 (7-60)

w2=zF ( n+ l n+2 3 )2 ' 2 ' 2' z_ (7-61)

They converge at least within the circle Izl < 1. When n is a nonnegative

integer, the series for w_ will terminate for even values of n and that for w2

will terminate for odd values of n. However, the polynomials obtained in this

manner must be identical, to within a constant factor, with the Legendre

polynomials P, (z).

The associated Legendre equation

[ m2](1--z 2) w"--2zw'+ n (n+l) l=zi w=0 (7-62)

reduces to Legendre's equation when m=0. It is a Riemann-Papperitz equa-

tion for all values of m. Its P-symbol is

l( 1w=P 1/2) m

_-- (1/2) m

(1/2) m --n

-- (1/2) m n+ 1

But upon transforming this to normal form, we find that
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0
w = (z2 -- 1) m/2p 0 m - n

-m m+n+l

If we let u be the transformed dependent variable, then

w = (z 2 - 1) m/2u

and

(7--63)

_O 0
u=P 0 m-n

-m m+n+l
(] - z)/2)

__rn --1 oo z/
=P 0 m--n

--m m+n+l

Hence, u satisfies the equation

(1-z 2) u"-2 (m+l) zu'+ (n-m) (n+m+l) u=0

But when Legendre's equation (7-58) is differentiated m times,

dm+ Zw dm+ lw draw _

(1--z 2) dzm+ 2 2(m+l)Z dz.,+l +-(n-m) (n+m+l)_z_=O

Since P,, and Q,,

(7-58) about z=l, we

(7-65) that

(7-64)

we obtain

(7-65)

are two linearly independent solutions of equation

see upon comparing equations (7-63), (7-64), and

/n

P'_(z) = (z 2-1)"/2 _--_z_[P.(z) ]
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and

Om(z) = (Z 2 -- 1 )m/2 _Z m [qn(Z) ].

are two linearly independent solutions to equation (7-62) about z= 1. They

are called the associated Legendre functions of the first and second kind,

respectively.
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CHAPTER8

ConfluentHypergeometricEquationand
ConfluenceofSingularitiesin
Riemnn-PapperitzEquation

Having studied equations whose only singular points are regular singular

points, it is natural to approach the study of equations with irregular singular

points by applying a limiting process wherein two or more regular singular

points of an equation are allowed to approach one another. The process,

whereby two or more singular points in any linear differential equation are

allowed to come together in such a way that at least one of the corresponding

exponents becomes infinite, is called confluence, provided the limiting form of

the differential equation exists.

8.1 CONFLUENCE OF SINGULARITIES IN RIEMANN-PAPPERITZ EQUATION

We shall apply this process to the Riemann-Papperitz equation whose

singular points are located at 0, b, and _ by letting the regular singular point

b approach the regular singular point at _. Now if we are going to allow the

exponents at the points b and _ to become infinite, we must prescribe the

manner in which they approach infinity. This can be done by letting these

exponents be functions of b whose values approach infinity as b--_ _. If we

suppose that the exponents are polynomials in b, it is not hard to show that the

requirement that the limiting form of the differential equation exist implies

that the exponents be, at most, linear in b. Now equation (7-8) is the general

Riemann-Papperitz equation with one of its singular points at _. If we require
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that the two singular points in the finite part of the plane are at 0 and b and if

we suppose the exponents at b are fl_+ bfl_ and fl_'-t- bfl_' and those at oo are

Y_+ by2 and Y_' + bT2', this equation becomes

d'Zw F l-a'-a" l - fl_ - fl] ' - b (fl2 + fl2' ) -I dw

dz---_ + [ 4-z z--:b J

-4- [ oda"b (fl_ + bfl2)(fl'_' + bfl_')b
÷

Z b--z
t tt tt ] W __--(T,+bT_')(T, + bT2) (b--z)z 0

(8-1)

But if the coefficient of w is to remain finite as b---> _, we must require that

? It ! 1!

f12f12 = 0 (8-2)-- T2T2

Then upon taking the limit in equation (8-1), we obtain the equation

d______+ ( _ + _;/
dz 2 \ l -- a' -- a"z ) dWdz

Olt Ol t t+ _ fl_fl_
Z2 ._it_ t , t -- (_'- 1)fl_'+ _"fl_+ _, ] w=0 (8-3)

z

where we have put

-- I t! It ! -- 1 1 tl (OPt tt tOgl--')/l')/2 "4-')/1")/2-Jr- (1 a --fl,)fl2 -- +fl_ )f12

This equation has a regular singular point at z = 0 and an irregular singular

point at z = _.
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8.2

CONFLUENT HYPERGEOMETRIC EQUATION

TRANSFORMATION TO KUMMER'S CONFLUENT HYPERGEOMETRIC EQUA-
TION

Making the change of dependent variable

O/H tt
W "_ 2; e -B2 Zu

transforms equation (8-3) into the equation

z

(8-4)

where we have put

T = 1 + a" - a' (8-5)

And, if 91 _' # fl_, the change of independent variable

t = (_" -- _2)z (8-6)

leads to Kummer's confluent hypergeometric equation

d2u+ -_-au=Ot dt 2 (T-- t)
(8-7)

where c_= o_1/(_2'- _2)"

Thus, once the solution to equation (8-7) is known, we can find the solu-

tions to any equation of the form (8-3).

8.3 SOLUTIONS TO KUMMER'S EQUATION: CONFLUENT HYPERGEOMETRIC
FUNCTIONS

We shall, therefore, seek a solution to Kummer's equation about the regu-

lar singular point t = 0. Just as in the case of the hypergeometric equation of

s, If fl:' =fl:, the change of independent variable z = (r2/16a,) and the change of dependent variable u= e-¢l/z%

lead to the equation "r(d2v/dT 2) + (23,- 1 -T) (dv/d'r) --[ (2T- 1 )/21v = 0, which is a special case of eq. (8-7).
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Gauss, the characteristic exponents at this point are 0 and ]--y. We again

suppose first that T is neither zero nor a negative integer. Then equation (8-7)

has a solution of the form ul=_ ant", which corresponds to the exponent
n=0

p----0. And we find, in the usual way, that

£ an(n--l+T)nt n-l- £ an-l(n--l-4-ol) tn-l=O
n=0 ?t=l

Therefore, ao is arbitrary and the recurrence relation is

(n-l+o0
an -- an-I

n(n--l+T)

which can be solved to obtain

forn=l 2, .

(a)n

an-- n!(y)n ao
for n = 1, 2, . . .

Hence, by using the generalized hypergeometric notation, the solution ul

can be expressed in the form

ul = a0 1F1 (o_; T; t) (8-8)

where the function

1Fa(c_;T;t)=£ (C_)n tn (8-9)

is called the Pochhammer-Barnes confluent hypergeometric function. Since the

only singularities of equation (8-7) are at t= 0 and t= _, the solution (8-9)
must be an entire function.

Other commonly used notations for 1Fl(c_; T; t) are M(oq T; t) and _(_;

y; t). A complete discussion of confluent hypergeometric functions is given in
reference 28.
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Notice that by putting t=z/fl in the hypergeometric equation of Gauss

(eq. (7-36)), we obtain the equation

dz 2 T-- (a+fl+ 1) z du zz- U=O

And upon taking the limit fl---> oo in this equation, we arrive at the confluent

hypergeometric equation (8-7). On the other hand, by putting t=z/fl in the

hypergeometric function of Gauss (defined in eq. (7-33)), we obtain

.=0 n!(T)afl n

And since

lim_®/3------7-=1

we see that at least formally

lim F (a, fl; y; fl)_®_-_ 1F1(o_; 3/; z)

In a similar way, if "g is not a positive integer, consideration of the series corre-

sponding to the exponent 1--T shows that

uz=t l-v 1FI(a+I--T; 2--T; t) (8-1o)

is also a solution to equation (8-12)

Thus, if y is not an integer, equations (8-9) and (8-10) provide a funda-

mental set of solutions to equation (8-7). But if y is equal to 1, these two solu-

tions are identical. And if T is an integer other than 1, one of the hypergeometric

functions in equations (8-9) and (8-10) is undefined and the other one provides

a solution to the differential equation. However, when ,/is a positive integer and

a is not a positive integer smaller than y, the other linearly independent

solution is given by
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_-2 n!(1- Y),+l
u = IF1 (a; T; t) In t -- _] t -{"+1)

,=0 (1--a)n+l

+ _] (y),nl(a)" [H(a, n)--H(y, n)--H(1, n)]t"
n=l

where the finite sum is to be omitted when y= 1 and H(a, n) is defined in

section 7.6. A corresponding result holds when T is a nonpositive integer, and

the remaining cases should be treated individually by the methods of chapter 6.

8.4 WHITTAKER'S FORM OF HYPERGEOMETRIC EQUATION

There is another standard form into which equation (8-7) (and, therefore,

as a consequence, eq. (8-3)) can be transformed. To obtain this equation, we

make the change of variable

_[/-_ t(1/2)3'e-(1/2)tu (8-11)

in equation (8-7) to obtain the equation

d2W+[l(1y_a) 1 Y(1--1Y 1dt 2 _5+ 2t 2 _¢z__ 0 (8-12)

In order to introduce standard notation, we put

and

1

k=_ T--a (8-13)

1
m=_ (T--l)

to get Whittaker's confluent hypergeometric equation

(8-14)
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t 1t
d2W _1 k+4 -mdt---q-+ 4 + t t2 W = 0 (8-15)

It follows from equations (8-8), (8-10), (8-11), (8-13), and (8-14) that if

2m is not an integer

Mk, m(t) : tm+(l/2)e-(1/2)t lF1 (_ + m-- k; 2m + l; t) (8-16)

and Me,-m (t) are a fundamental set of solutions to equation (8-15) in the

domain 0 < Itl < _.

The notation Mk, m is used in reference 25. The Whittaker's function

We, m is defined by

F(- 2m) Mk, m(t) A-

Wk, m(t) = F(_ m_ k+l )

F(2m) Mk, -m(t)

Since Whittaker's equation (8-15) is unaltered if we replace k by -k

and t and - t, it follows that

W = M-k, m (-- t) and W = M-k, -m(-- t) (8-17)

are also solutions to equation (8-15) in the region 0 < Itl < _. And since this

equation can have, at most, two linearly independent solutions, there must be

constants C1 and C2, such that

M-k, m(--t )_-- CIMk, re(t) q- C2Mk,-m(t) (8-18)

provided 2m is not an integer. But equations (8-9) and (8-16) show that

Mk, ,,,(t) and M-k, m(-- t) behave like t m+¢1/2), that Mk, -m behaves like t -m+¢1/2)

in the neighborhood of t = 0, and that
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1 1
lira,so (-- t)m+(1/2iM-k'm(t) = lim,_.ot m+(1/2)Mk' re(t) -= 1

Hence, equation (8-18) can hold only if C2 = 0 and C1 = (- 1) ,,+(1/2). Therefore,

M-k, m(-- t) = (-- 1)m+(1/2)Mk, m(t)

But substituting equation (8-16) in this equation shows that

e 1F1 +k+m; l+2m;-t =iF1 l_k+m; l+2m;t

And upon using equations (8-13) and (8-14) to express k and m in terms of

o_ and T, we obtain Kummer's first formula

IF, (o_; T; t) = e¢ IF1 ('y -- o_; T; -- t) (8-19)

This equation holds even when T is a positive integer, for in this ease, we

eould have replaced Mk,-m by the appropriate logarithmie solution and

earried through the proof in the same way.

8.5 LAGUERRE POLYNOMIALS

If the parameter c_ in equation (8-7) is zero or a negative integer, the

solution _F_ (c_; y; t) (defined in eq. (8-9)) terminates after a finite number

of terms and becomes a polynomial. This polynomial differs from the gen-
eralized Laguerre polynomial

L_)(t)- ( l + b )n _F_ (-- n; l+b; t) for n=0, 1,2 (8-20)
n! _ "

only by a normalizing factor. When b = 0 in equation (8-20), we obtain the

simple Laguerre polynomial Ln defined by

Ln(t) = _FI (- n; 1; t)

Equations (8-9) and (8-20) show that
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L_)(t) = _ (-n)j(l+b).tJ
j=o j!(l+b)jn!

(-- n)j/n!= (-- 1)J/ (n-- j) !

L_)(t)= _] (l+b).(-t)J (8-21)
j=o (l+b)jj!(n--j)!

and

L.(t) = _ n!(-t)J
j=0 (J!)2(n- J) !

(8-22)

8.6 BESSEL'S EQUATION

An important special case of equation (8-3) occurs when

OtP'=--_=p

fl_'=--fl_=i

/o_" 1 1al=2i

The equation

(8-23)

z2w" +zw' + (z2-p2)w=O (8-24)

obtained in this manner is called Bessel's equation. When p is not a negative

integer, the methods of chapter 6 can be applied in the usual way to show that

(see section 7.5)

( z2)2 (--1)kZ2k+P=zP°F1 --; I+P;-- 4
k=O 22kk!(1 A- P)k

(8-25)
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is a solution to equation (8-24) about the regular singular point z = 0. However,

it is conventional to muhiplv this solution by the normalization factor

[2vF(1 +p)]-i and to use equation (5-35) to eliminate the generalized factorial

function in the denominator. When this is done, we obtain the suitable nor-

malized solution

wi --Jp (8-26)

where

,Jr(z) = k!F(l+k+p)
k=O

(8-27)

is the Bessel's function of the first kind of order p. Notice that this function is

defined even when p is a negative integer. And since z = 0 is the only finite

singular point of the differential equation, the series must converge in the

entire plane. Although Bessell functions were used by both Leonard Euler and

Daniel Bernoulli before Bessel was born, the German astronomer Fredrick

Wilhelm Bessel was the first to make a detailed study of them.

Since the function in equation (8-25) differs from Jp only by the normaliza-

tion factor [2vF(1 +p)]-i when p is not a negative integer, it follows that

(7
Jp(z)-r(l+p) 0Fl(-;l+P:-42) for p #--l, -2, . (8-28)

On the other hand, we know that equation (8-24) can be transformed into

Kummer's confluent hypergeometric equauon (8-7) by using the change oI

variables given by equations (8-4) to (8-6).

The solution Jp can, therefore, be expressed in terms of a linear combina-

tion of solutions of equation (8-7). Thus, if p is not an integer, it follows from

equations (8-4) to (8-6), (8-8), (8-10), and (8-23) that

(1 ) (1 )Jp(z)=AzPe-iziF1 p+-_, l+2p; 2iz +Bz-Pe-iziF_ -2-p; 1--2p; 2iz
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But upon comparing the behavior of these functions at z--0, we find, when

p is not an integer, that this equation can only hold if B=0 and that

A= [2vF(l+p)] -1. Hence,

zPe-iz

Jp(z) -2pr(1 +p) / 1 )1F1 p-4- _ ; 1 + 2p; 2iz

Comparing this with equation (8-28) shows that

_FI --; l+p;-_- =e-iZlFi p-t-_-; l+2p; 2iz

Then by putting _= iz and ol=p+ (1/2), we obtain Kummer's second formula

( 11)oF, --; a + _; _ _2 = e-_ 1El (_; 2a; 2_)

When p is a negative integer, there is a close relationship between Jp

and J_p. Thus, suppose p---n for n= 1.2, . . . Then since the F-function

has poles at each of the nonpositive integers, all the terms in the sum (8-27)

will vanish for k < n; and we obtain

_ (1) k (Z) 2k-nJ-n(z) = k!F(l+k--n) -2
k=n

But this becomes, upon shift of index from k to k-n,

J-n(z) = (k+n)!r(l+k) -2
k=0

Hence, it follows from equation (5-36) that

J-n(z) = (- 1)nJn(z) for n= 1, 2, . . . (8-29)

243



DIFFERENTIAL EQUATIONS

Since wl =Jp is a solution to equation (8-29) for all values ofp and since the

parameter p enters equation (8-24) only as pZ, the function

w2=J-p(z) (8-30)

must also be a solution to this equation for all values ofp. When p is an integer,

equation (8-29) shows that the solutions w, and w2 are not linearly independent.

However, for any nonintegral value of p, consideration of the behavior of the

functions Jp and J_p in the neighborhood of z = 0 shows that w_ and Wz consti-

tute a fundamental set of solutions. In order to obtain a second linearly independ-

ent solution to equation (8-24) when p is an integer, notice that for any value

of p

2""- "- (z*-p2)jp 0Z Jp -1-ZJp-1-

2It! t t
z j_p-t-zJ_p+ (z 2-p_)J_p 0

(8-31)

Since the series (8-27) is uniformly convergent, it can be shown that Jp, J_p,

and their derivatives with respect to z are all differentiable with respect to the

parameter p. Hence, upon differentiating equations (8-31) with respect to p

and subtracting the result, we obtain

z2J'j + zJ'p + (z z- p2)jp = 2p[Jp- (- 1 )"J_p] (8-32)

where we have put

flop = OJ____pp ),, oJ_ p
Op -- (- 1 Op

By taking the limit as p---> n in equation (8-32) and using equation (8-29),

we find that the Bessel function of the second kind

Y,+(z) -= 71 limp._,,,L--_----P-[°JPCz)(- 1)n OJ_p(Z)op] (8-33)

is a solution to equation (8-24) with p = n. But upon substituting equation (8-27)

into this expression and noting that
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_--.-k F2(z) dz
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-- (-- 1)k+lk! for k=0, 1, 2, .

it follows after some algebraic manipulation, which we shall omit here, that

Yn(z) 2 (z) l_(h-k-1)!(2)2k-"=_ ,/+In _ J,(z)-- k!
71"k=O

1 _. kV(n+k) v (Hk+Hn+k) (8-34)
71"k=O "

where the finite sum is to be omitted if n = O, Hk is defined by equation (6-89),

and ,/is Euler's constant defined by

3,-- lira (Hk--ln k) = 0.5772156649 . . . (8-35)

It is easy to see from equations (8-27) and (8-34) that Yn and J, are a funda-

mental set of solutions.

It is convenient to extend the definition (8-33) of Yn to nonintegral values of

p. This is now done by putting

yp(z)=Jp(z) cos p_-J-p(Z) (8-36)
sin per

when p is not an integer. Then I19 and Jv are a fundamental set of solutions.

And both the numerator and denominator of this expression vanish when

p is an integer. But by using L'Hospital's rule, we find that for n=0, 1,2, . . .

lim Yp(z) = lim Jp cos p'n"-J_p= lim
_n ,,-*n sin per _

_pCOS zrp -- -00_-_-- 7rJp sin pTr

¢r cos pTr

7r ,,-.n ap COS pTr 0p 7r r.n

And comparing this with equation (8-33) shows that definition (8-36) is indeed

an extension of definition (8-33).
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For large values of z with larg zl < 71",the Bessel functions Jp and Yp
behave like

I2) t-- sin z-
7rz 2 4

(8-37)

However, it is sometimes convenient to have solutions to Bessel's equation

which tend to zero exponentially as Izl _ _ in the entire half plane_z > 0

or in the half plane _z;_,_z < 0. But since equations (8-37) show that for large z

Jp(z)+_iYp(z) (2) 1/2
_ e+i[z-(plr/2)-(lr/4)]
7"fZ

we see this property is possessed by functions J,+-iYp. For this reason, the

Hankel functions of the first and second kind HcI_pand H_, respectively, are
defined by

H(pl)(z) =Jp(z) + iYv(z)

H ¢2)(z) = Jp (z) - iYp (z)
p

It is not hard to show that these solutions are a fundamental set.

In a number of applications, we encounter the equation

z2w '' + zw' - (z2 +p_)w= 0 (8-38)

which is obtained from Bessel's equation by replacing z by iz. Although Jv(iz)

and Yp(iz) are a fundamental set of solutions of equation (8-38), it is convenient

to introduce new functions which are real for real values of z (at least for real

values of p). To this end the modified Bessel functions of the first and third

kind Iv and Kv, respectively, are defined by

[p (Z) = e-i(P_/2)jp ( iz)
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Kv(z) = _ e,¢_/2) H_,)( iz) = -_ e,¢_/2) [Jp( iz) + iYp( iz) l

There are a number of useful relations between the Bessel functions and

their derivatives. Thus, it follows from equation (8-27) and equation (5-31)

that

_-_ (-- 1 )kz2k+2p
ZPJp(z)

k=O_ 22k+pk!(k+ p)F(k+ P)

But upon differentiating both sides with respect to z, we find that

d = _ (-- ])kz2k+2p-1 __
-_z (zPJp(z) ) 1_.., 22k+p+lk!F(k_4_p ) zpJp_l(Z) (8-39)

k=O

In a similar way it can be shown that

d

-_Z z-PJP ( z ) = - z-pJp+ l ( z ) (8---40)

After carrying out the differentiations in equations (8-39) and (8-40), we obtain

dJp
z ---_z = ZJp_l - pJ p (8-41)

z dJP=-zJp+, + pJv (8--42/
dz

And by adding and subtracting these equations, we find

dJp_ jp 1
2 -_z - - - Jp+ l (8--43)

and

2pJp = ZJp_l + ZJp+l
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The formulas (8-39) to (8-44) are very useful when dealing with Bessel func-

tions. They also apply to the Bessel functions Y,, H(p1), and H(p2). However,

they must be modified slightly for the functions Iv and Kp (due to the presence

of iz ) .

A much more complete treatment of Bessel functions can be found in

reference 29.

8.7 WEBER'S EQUATION

Another equation, which has been extensively studied, can be obtained

from equation (8-3) by putting

1 1 n
O_' _" 0 P' '=- = #2 (8-45)2

to get

1 1/1zw" +-_ w +-_ + n---_ z w=0

and then making the change of independent variable

(8-46)

2 (8-47)

to obtain Weber's equation

d2w_-_+(n+ l_-gl_ 2) w=0 (8-48)

This equation was first studied by Hermite (1864) and then by Weber. Its

solutions are called parabolic cylinder functions or Weber functions.

Since equation (8-46) can be transformed into the confluent hypergeo-

metric equation (8-7) by the change of variables (8-4) and (8-6), equation

(8-48) can be transformed into equation (8-7) by the change of variables (8-4)

to (8-6) and (8-47). Hence, the solutions to equation (8-48) can be expressed in

terms of the solutions to equation (8-7). Therefore, use of equations (8-4) to

(8-6), (8-8), (8-10), (8-45), and (8-47) shows that a fundamental set of solu-

tions to Weber's equation (w,, w2) is given by
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nl 1 )2' 2' 2 _2 (8-49)

W2 = e-(1/4)_2_21F1 t" n_1,32,21_2 ) (8-50)

Notice that if n is a positive even integer, the hypergeometric function in

equation (8-49) terminates and becomes a generalized Laguerre polynomial;

while if n is a positive odd integer, the hypergeometric function in equation

(8-50) becomes a generalized Laguerre polynomial. Thus, it follows from equa-

tions (8-20), (8-49), and (8-50) that, if n is a positive integer, equation (8-48)

has one solution w3 of the form

W3 = e-O/4K2Hn(_) for n= 1, 2, . . (8-51)

where H, is the nth Hermite polynomial, which is defined in terms of the gen-

eralized Laguerre polynomials by

H2k(_) = (--1)k22kk_k-'/2)(_2)
k=0, 1, 2,.JH2k+l(_) (-- 1)k22k+'k!_L£¢1/2)(_ 2)

(8-52)

8.8 OTHER EQUATIONS STUDIED

Although we have been able to give a complete presentation of the gen-

eral theory of the solutions to second-order linear equations about regular sin-

gular points, apart from relatively trivial cases, only the solutions to those

equations which can be transformed into the hypergeometric equations of

Gauss and of Kummer have been exhaustively studied. The equations of

Lamg and Mathieu have also been studied, but only a small amount of knowl-

edge of the functions defined by these equations has been obtained. The

Mathieu equation is

d2w

dz 2 + (a+ k 2 cos2z)w----0

where a and k are parameters, and the Lame equation is
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_____w+
dZ2 [_l-4-n(n-+l)msn3(zlm)Jw =0

where sn(zJm) is the sine amplitude elliptic function of modulus m, and 7/, n,

and m are parameters. When n--2, its solutions can be expressed in terms of

elliptic functions. For more information about these equations, the reader is

referred to reference 3. An extremely complete discussion of Mathieu's equa-

tion with many applications is given in reference 30.

All the equations Which have been discussed in the last two chapters can

be derived from a single equation with six distinct regular singular points (with

the characteristic exponents at each singular point differing by 1/2) by allowing

these singular points to coalesce. The coalescence of any two such points is a

regular singular point whose exponents differ by an arbitrary amount. The

coalescence of three or more such points will result in an irregular singular

point. The reader is referred to reference 3, chapter 20, for a more detailed

study of these matters.

250



CHAPTER9

SolutionsNearIrregularSingularPoints:
AsymptoticExpansions

9.1 GENERAL CHARACTER OF SOLUTIONS

Let z0 be an isolated singular point of the differential equation

d_w + dw +
dz2 p(z) dz q(z)w=O (9-1)

We have shown in chapter 6 that it is always possible to construct a funda-

mental set of solutions to this equation on a punctured circular region about

z0 whenever z0 is a regular singular point. And these solutions can be expressed

in terms of certain convergent power series whose coefficients can be calculated

successively. This occurs because the functions fl (z) andfz(z) in the canonical

basis (6-20) can have, at most, poles at z0. However, this will not be the case

when the point z0 is an irregular singular point of equation (9-1) since at least

one of the two functions fl (z) and f2 (z) will then have an essential singularity

at z0. This function will therefore have a series expansion about z0 of the form

(6-21) in which infinitely many negative powers of z-zo are present. And the

coefficients of this series are determined by an infinite set of equations which

cannot be solved recursively. For this reason we do not have a convenient

method of finding the corresponding solution. In addition, the characteristic

exponents are determined by a transcendental equation (which usually cannot

be solved explicitly) instead of by an algebraic equation. Finally, the series

once found are usually slowly convergent.

488-942 0 - 73 - 17
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9.2 FORMAL POWER SERIES

Even if z0 is an irregular singular point, it may still happen that the function

fl (z) in the canonical basis (6-20) has, at most, a pole at z0, in which case it

would still be possible to recursively construct 92 one solution about this point.

And this solution would be of the form "a

w= (z-zo)Pf(z) (9-2)

where f(z) is analytic in a neighborhood of z0, and therefore has a convergent

power series expansion

f(z)= _ an(z--zo) n
n=O

(9-3)

about zo. We assume, without loss of generality, that the exponent p is adjusted

to make a0 # 0 and therefore to make

f(zo) # 0 (9-4)

A second solution could then be found, at least in principle, from equation

(6-63).

When p(z) has an essential singularity at z0, equation (9-1) can possess

a solution of the form (9-2) only when q(z) is equal to zero or has an essential

singularity at zo. But suppose that p(z) has a pole at z0, say of order m. Thus,

p (z) = (z--zo) -raP(z) (9--5)

where P(z) is analytic at z=zo. Now if equation (9-1) possesses a regular solu-

tion of the form (9-2), this solution together with (9-5) can be substituted into

equation (9-1) to obtain

If it were the functionfz(z) which had the pole at zo and the functionJi(z) which had the essential singularity,

then either we could (when a = 0) change the notation so that the function)q (z) had the p01e at z0 or (when a # 0) the

solution w2 would depend upon fl(z) (through wl(z)) and could therefore not be constructed recursively.

93 Recall (ch. 6) that a solution of this type is called a regular solution.
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.f" (z) 2p f' (z) p(p--1)

q(z)-- f(z) Z--Zo f(z) (Z--Zo) z

_( 1 f' (z) A P 1]z---Zo) m f(z) (z--zo) m+ P(z) (9-6)

And since f(zo)_ O, it follows that the functions if/f, f'/f, and P are analytic

atz=z0.

First, suppose that m is either zero or 1. Then equation (9-6) shows that

q(z) has, at most, a pole of order two. We therefore conclude that when p(z)

has, at most, a simple pole at z0, equation (9-1) will possess a regular solution

of the form (9-2) if, and only if, z0 is a regular singular point.

Now, suppose that m > 1. Then equation (9-6) shows that q(z) has, at most,

a pole of order m + 1. Hence, we conclude that when p(z)has a pole of order

m > 1 at a point z0, equation (9-1) can possess a regular solution about this

point only if q(z) has, at most, a pole of order m-4- 1 at z0.

The corresponding result for the case where the point z0 is at oo can be

obtained in the usual way by applying these results at the origin of the [-plane

to the coefficients of the transformed equation given by equations (6-28) and

(6-29). This leads to the conclusion that if p(z) has a pole of order _ m I> 0

about z=_, equation (9-1) possesses a solution about this point of the form

only if the highest power of z which occurs in the Laurent series expansion of

q(z) about z = _ is m - 1.

Now suppose that z0 is a finite point, p(z) has a pole of order m at z0, and

equation (9-1) possesses a solution of the form (9-2) about zo. Then, q(z) must

be of the form

q(z)=(z-zo)-m-lQ(z) (9-7)

Recall that we say that a function has a pole of order zero at a point if it is analytic at that point.
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where Q(z) is analytic at z=zo. This function Q(z) and the function P(z)

which appears in the representation (9-5) of p(z) can be expanded about z0

in the convergent power series

P(z) = _ p,(z--zo)"
n=O

Q(z) = _ qn(z-zo) n
n=0

(9-8)

where p0 # 0.

We can now proceed much as we did in chapter 6 for the case of a regular

singular point by substituting equations (9-2), (9-3), (9-5), (9-7), and (9-8)

with m > 1 into equation (9-1) and then collecting the coefficients of like

powers of z--zo. When this procedure is carried out, we find first that the

indicial equation is not quadratic (as in the case of a regular singular point)

but that it is an equation of the first degree which is

ppo A- q0-_ 0 (9-9)

This is consistent with the fact that, at an irregular singular point, at most

one solution of the form (9-2) can occur.

Next, the coefficients of the series (9-3) can still be calculated recursively,

but the resulting series will now either terminate after afinite number of terms

or else it will diverge for all Iz-zol > 0 (ref. 3, p. 421). Thus, a regular solution

will only exist in the exceptional case when the series (9-3) contains a finite

number of terms.

For example, the equation

w,,+2(z-a) 1 ( 3 )a+-4z w=O

has an irregular singular point at z = 0. And it has a series solution about this

point given by

(1)w = z -1/z 1-- 2a Z
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which terminates after two terms.

Even though it is possible to calculate as many terms as desired when the

series does not terminate, the solution obtained in this manner will not have

any meaning in the usual sense since the series does not converge. This should

not be taken to mean, however, that this "formal" solution is not useful.

9.3 ASYMPTOTIC CHARACTER OF SOLUTIONS

In order to introduce the concepts which allow the formal solutions

obtained in the preceding section to be utilized, it is convenient to consider

an example given by Euler in 1754. Thus, the differential equation

3z+ 1 1
W" A"

z: w +_w=0 (9-10)

has an irregular singular point at the origin and a regular singular point at

infinity. Since the order of the pole of the coefficient of w at z ----0 does not

exceed the order of the pole of the coefficient of w' at z = 0 by more than 1, we

know that equation (9-10) possesses one (and only one) formal solution about

z = 0 of the form

w = zP £ anz n (9-11)
n=0

We ean therefore proceed just as in the case of a regular singular point and

substitute this expansion into equation (9-10), shift the indices to the lowest

one present, and collect terms to obtain

£ (n -f- p)2an-lZn+P-1 -'_ £ (n -4- p)anz n+p-1 = 0
n=l n=O

Then by equating the coefficients of the various powers of z to zero, we find

that since a0 # 0

p = 0 (9-12)
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and

(n + p)2a,_l =-- (n + p)a, for n = 1, 2, 3, . . . (9-13)

The indicial equation (9-12) is consistent with the general indicial equation

(9-9) since, in this case, q0 = 0. When equation (9-12) is substituted into the

recurrence relation (9-13), we obtain

an = -- nan-a for n = i, 2, 3,... (9-14)

And by proceeding in the usual way, we conclude from this, that

a,, = (- 1) nn !ao

Finally, substituting this, together with equation (9-12), into equation (9-11)

shows that equation (9-10) possesses the formal solution

w= _ (-- 1)"n!z"
n=O

(9-15)

A simple application of the ratio test, however, shows that this series

diverges for all z # 0. Hence, as we have already indicated in the general case,

equation (9-15) is not a regular solution. However, we might anticipate that,

since equation (9-15) was determined in a formal manner by the differential

equation, it might still, in some sense, represent a solution to that differential

equation.

In order to see what this is, note that equations (5-29) and (5-36) show that

n! = e-tt"dt (9-16)
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However, when this is substituted into equation (9-15), we find that

f0 °w = £ e-t(--1)nzntndt
n----0

And again, proceeding formally we interchange the order of summation and

integration to obtain

w= f: e-t £ (-zt)"dt
n=0

Finally, summing the geometric series shows that

f0 _ e -tw = 1 + zt dt (9-17)

Now this integral converges uniformly 95 for all z in any region R bounded

away from the negative real axis. In fact, differentiating with respect to z and

interchanging the order of integration and differentiation shows that

dw ff te-t--_z =- (1 + zt) 2 dt (9-18)

9s This means that for any positive number e, no matter how small, there exists a positive number T(e) which

depends on e but not onz such that l f f [e-q(l+zt) ]dtl < e for all t >_ T(e) and all z in R.
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Y

FIGURE 9-1.-Region of convergence of J te-to (l +zt) 2 fo _ e -tdt and (l+zt) 2 dt.

But since this integral converges uniformly for all values of z in any region

bounded away from the negative real axis (fig. 9-1), we can conclude that the

derivative exists and that interchanging the order of integration and differentia-

tion was in fact justified, provided z is not on the negative real axis (ref. 31).

foHence, [e-t/(1 + zt)] dt is an analytic function of z everywhere in the z-

plane cut along the negative real axis and is therefore infinitely differentiable

in this region.

Upon multiplying equation (9-17) by z and equation (9-18) by z 2 and

then adding the result, we get

Z 2w t-_-zw_-z 2 fo _ e-t t fo _ e-t dt(1 -4- zt ) 2 dt + z 1 + zt

fo fo= e_t z(1 + zt) -- z2t dt = e-tz dt
(1 -4- zt ) 2 (1 -4- zt) 2

And after integration by parts, this becomes
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zZw' + zw=-- e-t ][-- fo _ e-t dt=l+ zt l + zt l--w

which shows that w satisfies the equation

z2w ' + (z+ 1)w= 1

provided z is not on the negative real axis. Since w is infinitely differentiable,

we can certainly differentiate this equation with respect to z. But when this is

done we obtain equation (9-10). Thus, the function w given by equation

(9-17) provides a perfectly valid solution to equation (9-10). This solution

was obtained by formally summing the divergent series (9-15), which was, in

turn, obtained by formally solving equation (9-10). It is, therefore, natural to

ask in which sense the divergent series (9-15) represents the integral (9-17)

and, therefore, as a consequence, in what sense it represents a solution to

equation (9-10). To answer this question, let

m

Sm(z) = _ (- 1)"n!z" (9-19)
n=O

be the mth partial sum of the series (9-15). Now from elementary algebra, we

know that the sum of the finite geometric series is

m 1 -- Fm+l
Fn _ 1--r

n=O

which becomes, upon setting r=--zt,

1 __ (__zt)m+l m
4- _ (--1)n(zt)"1 + zt 1 + zt

n=O

But, upon multiplying both sides by e -t and integrating between 0 and _, we

find that

fo _ e-t fo _ m1-4- z_--tdt= _(-- 1)n(zt) ne-tdt-4-Rm(z)
n=0
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where we have put

fo °_
Rm(z)=(--z)m+' --

tm+ le-t

1 +zt dt (9-20)

And since it is always legitimate to interchange the order of integration and

summation for a finite sum, this becomes

fo _e------_t _ fo _1 +zt dt- (-- 1)nz n tne-tdt=Rm(z)
n=0

Hence, substituting in equations (9-16) and (9-19) shows that

f0 _ e -t1 + z-------[dt - Sin(z) = Rm(z) (9-21)

Now since

I1+ ztl = I1 + xt + iytl = X/(1 + xt) 2 + y_t2

it follows that

I1 + ztl _ V(1 + xt) 2 = l1 + xtl t> 1 fo_ _ z = x > 0

And for _,_ z = x _< 0 we find that

I1 + ztl V'(xt) 2 + (yt) 2= { (1 + xt)2(xt) 2 + y_t2[(1 + xt) 2 + (xt) 2] + (yt)4} '/2

1

t> _/y_t2[(1 + xt) 2 + (xt) 2] I> -_ lytl

Hence

1 lytl 1 lyl 1
II+ztl_> V2X/(xt)_+(yt)2 V2 V_x_+y_ V_ Isin61

for _2_ z =x < 0
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where _b is the argument ofz. We have therefore shown that

_1 for _z_>0 (9-22)

and

[1 + zt I
_< _/_ Icosec 61 for _ z _< 0; 1_1< = ¢9-23)

It now follows from equations (9-20) and (9-22) that when _ z/> 0

1 + z-----_tdt

fo1 + zt dt _ IzJm+l tm+le-tdt

And equations (9-16) and (9-21) therefore show that

[Wl(Z)--Sm(Z)]_ Izlm+' (m+l) ! for_z >0 (9--24)

where

fo p e -tw_(z) =- l_ztdt (9-25)

is the solution to equation (9-10). In a similar way, it follows from equation

(9-23) that

[w,(z)-Sm(z)[_ V_I eosec4,11zlm+,(m+l)! for_._ z<0; I_bl < 7r

(9-26)
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Thus, in view of equations (9-15) and (9-19), the inequalities (9-24)

and (9-26) show that, provided qb, the argument of z, is smaller in absolute

value than zr, the error incurred by computing the solution wl (z) by means of

the divergent series (9-15) goes to zero rapidly as z-'-_ 0. Thus, for any fixed m,

any desired accuracy can be obtained by taking ]z] sufficiently near zero. In

particular, the inequality (9-24) shows that, provided _ z > 0, the error is

never greater in magnitude than the first term omitted in the series.

Now recall that a series _--o a, is said to converge to a sum A if its partial

lit

sums tm= _=o a. satisfy the relation

lim lA-tml=O

The series (9-15) certainly does not converge to the solution wl (z) since

lim Iw,(z) -Sm(z) l #0
m--_

(9-27)

But this series is said to be an asymptotic expansion (which will be defined

subsequently) of wl(z) since, as can be seen from equations (9-24) and

(9-26), it has the property that

lim wl(z) -Sm(z)
_o z m =0 for [6[ _< zr+e (9-28)

for any e > 0.

9.4 ASYMPTOTIC EXPANSIONS

Roughly speaking, equation (9-28) shows that the difference between

the solution Wl(Z) and the mth partial sum Sin(z) of the series (9-15) approaches

zero more rapidly than zm as z---> 0. Comparing the definition of convergence

with the corresponding condition (9-28) for a series to be asymptotic, shows

that the essential difference between these two concepts can be stated in the

following way: If the series is convergent to Wl (z), then z is held fixed and the

difference w_(z) -Sm(Z) approaches zero as m approaches infinity. If the

series is asymptotic to w_ (z), then the number m of terms is held fixed and the
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difference wl(z)-Sm(z) approaches zero (at a specified rate) as z approaches

some fixed value, say zo.

There is no reason why a given series cannot be both asymptotic and con-

vergent at the same time. For example, the geometric series _ z" is convergent
n=0

to 1/(1 --z) for ]z] < 1 and it is also an asymptotic expansion of this function
as z---_ 0.

When a series is convergent as well as asymptotic, the approximation

can usually he improved at fixed z by taking more and more terms in the par-

tial sum. However, it happens more frequently that an asymptotic series is

divergent. 9e When this is the case, there is some limiting value to the accuracy

of the approximation which can be obtained at each fixed value of z. This limit-

ing value is attained when the optimal number of terms is retained in the expan-

sion. Thus, for the expansion (9-15) with z > 0, the right side of the inequality

(9-24) is a minimum when m _ Iz] -1. For this value of m, SIn(Z) will provide

the best approximation to wl (z).

The theory of asymptotic expansion was initiated by Stiehjes and by Poin-

care at the end of the nineteenth century. Before giving the general definition

of an asymptotic expansion, it is convenient to introduce the concept of order.

Thus, if _b and _b are complex functions of z, we write

6=0(6) as z--->zo

if there exists a finite constant A such that

And we write

_b= o(qJ) as z--> zo

if

9SUsually in this case the terms of the series first decrease rapidly (the more rapidly the closer the independent

variable is to its limiting value) but eventually start to increase again.
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The symbols O and o are called order symbols, and in both cases we say that

6 is of order _b. Thus,

z4: O(z 5) as z-->

z4= o(z _) as z--*

z4= 0(4z4+ 3z 3) as z--->

but

Also

z4# o(4za+ 3z 3) as z --->

z 5 = o(z 4) as z---> 0

but

z 4 # o (zs) as z---> 0

and, for _e z > 0,

e-z=o(zo) as --,

for any constant a.

If f (z) is an analytic function which has a pole of order m at zo, then

f(z) =O( (z-zo) -m) and .f(z) # o( (z-zo) -m) as z--* zo

It is common practice to denote any sequence, say al, a2, aa, . •., by

{aj}. A sequence of functions {_b/(z)} is said to be an asymptotic sequence as

z--* Zo if for each integer j, ¢bj+l = o (6J) as z--* z0. Thus, { (z - zo)J } is an asymp-

totic sequence as z---_ Zo; {z-J} is as asymptotic sequence as z-'-> _; and {e-Jz} is

an asymptotic sequence as z---_ _, provided _,_ z > 0.
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Note that equation (9-28) can be written in terms of the order symbol o as

Wl--Sm=O(Z m ) as z---_ 0

We are, therefore, led to the following definition: Let {_b_(z)} be an asymptotic

sequence as z---* z0. Then the formal series

ajqb_ (z) (9-29)
j=0

m

with partial sums Sin(z)= _aj6_(z) is called an asymptotic series. The
j=0

asymptotic series (9-29) is said to be an asymptotic expansion to m terms

of a function f(z) if

f(Z) --._m(Z)=O(6m ) asz "-'_ z0 (9-30)

and we write

m

f(z) _ j_=o ajcb_(z)

If equation (9-30) holds for every positive integer m, we simply say that

equation (9-29) is an asymptotic expansion off(z) and we write

f(z) _ _ aj6_(z)
j=O

Thus, in the preceding example, we have shown that

f f e-tdtl + zt (-- 1) " n !z'_
n=O

This series is typical in that most asymptotic series encc mtered in practice

involve powers or inverse powers of z. Such series are called asymptotic power
series.

Once a particular asymptotic sequence has been specified, any given

function will have only one asymptotic expansion in terms of this sequence.
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In this sense the asymptotic expansion is unique. However, two different

functions may have the same asymptotic expansion. Thus, if

f(z) _ _ a_ -_ as z --> oo

it is not hard to verify that

f(z) + e -z _ _ a,z -_
n=0

as z--->

for_ z>0.

It can be shown that if f(z) _ _, an6,(z) and g(z) _ _, b,cb,(z) , then

for any complex constants _ and/3. It is generally possible to integrate asymp-

totic expansions term by term, but differentiation is not always permissible

(ref. 32).

Asymptotic power series can be manipulated in much the same way as

convergent power series. Let the function f(z) be a single-valued analytic

function at every finite point z with JzJ > R. Iff(z) has the asymptotic expansion

0¢

f(z) _ _ a,z-"
n----0

as Z '-> _

and this expansion is valid for all values of the argument of z, thenf(z) must

be bounded as z--'> _. Hence, it cannot possess a pole or an essential singu-

larity at z--oo. Therefore, an analytic function cannot possess a single asymptotic

expansion in inverse powers of z as z---> _ which is valid for all values of the

argument of z unless it is analytic at infinity. Thus, asymptotic power series

are frequently valid only over a given sector of the complex plane, and a

different asymptotic representation must be used outside this sector. This

is closely related to the so-called Stokes phenomenon which we shall encounter

subsequently.

If a function f(z) is analytic at a point z0 and, therefore, possesses a con-

vergent power series about z0, it is not hard to see that the series must also

be an asymptotic expansion off(z) as z --->z0 (ref. 32, p. 22).
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9.5 NORMAL SOLUTIONS

Let z0 be an irregular singular point of the equation

w"+p(z)w' + q(z)w= 0 (9-31)

and suppose that, if z0 is a finite point,

p=O( (z-zo) -m) and q=O( (z--zo) -_k+l)) as z---> Zo

and that, if z0= _,

p=O(z m) and q=O(z _k-1)) as z--_

where m and k are integers.

We have seen that, when k _< m (and only in this case), it is always possible

to construct a formal series solution Wl (z) of the form

or of the form

a,(z-zo)" ifz0is finite (9-32a)
n=0

w,(z) = (z-zo)p

wl (z) = zP_0__ a,z-" if z0 = _ (9-32b)

which satisfies the differential equation term by term. The coefficients of these

expansions can be calculated recursively from the differential equation in

much the same manner as those in the series solutions at regular singular

points. These expansions will, in general, be divergent. However, as we have

seen by example they actually turn out to be asymptotic expansions of a true

solution to equation (9-31) at the point z=zo. They will, therefore, be very

useful for numerical computation 97 of this solution for z near z0.

The series in equations (9-32a) and (9-32b) will not diverge only if they

terminate after a finite number of terms, in which case these equations will

represent regular solutions to the differential equation (9-31). A second solu-

97In fact, asymptotic expansions are quite frequently more suitable for numerical computation than convergent

power series since fewer terms are required to obtain a given accuracy.
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tion at the point zo can then always be found from equation (6-63). Thus, except

in the relatively rare case where k _< m and the formal power series solution

terminates, it is still necessary to find one or two solutions to equation (9-31)

or at least the asymptotic expansions of these solutions about the irregular

singular point z=zo. To this end, we introduce into equation (9-31) the change

of dependent variable

w= enu (9-33)

where

$

ton(z--zo) -n if Z0 is finite
rt=l

$

to_n ifzo =
rt=l

(9-34)

and the coefficients to,, for n=l, 2, . .., s are complex constants. Then

equation (9-31) is transformed into the equation

u"+ p+(z)u' + q+(z)u=O (9-35)

where

p+ (z) = p (z) + 2 _' (9-36)

and

q+(z) =q(z) +p(z)l'_' + _"+ _ '2 (9-37)

Now if, when z0 is finite, the terms in O(z) can be chosen to cancel out

enough of the negative powers of z--zo which arise from p(z) and q(z) so that

p+ (z) has, at most, a simple pole and q+ (z) has, at most, a pole of order two at

z0, then z0 will be a regular singular point of equation (9-35). Similar remarks,

of course, apply when z0 = _. In either case, then, when this can be done, a
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fundamental set of solutions can always be found by the methods of chapter 6;

and equation (9-33) will then provide a fundamental set of solutions of equa-

tion (9-31). But this usually cannot be done. More frequently, it is only pos-

sible to adjust the coefficients in ll so that the resulting equation (9-35) will

possess a formal solution either of the form (9-32a) (when zo is finite) or of the

form (9-32b) (when zo is infinite). Then equation (9-31) will have a formal solu-
tion either of the form

w(z)=enCZ_(Z-Zo) p _ an(z--zo)"
n=0

or of the form

if z0 is finite (9-38a)

w(z) = ea¢Z_z p _ a_z -_
n=O

if z0 = _ (9-38b)

These formal solutions, called normal solutions, either will terminate or they

will diverge in which case they will be asymptotic expansions.

Before discussing this in more detail, it is convenient to introduce the

following definition: If the coefficients p (z) and q (z) of the differential equation

w"+p(z)w'+q(z)w=O (9-39)

have, at most, poles at zo, the equation is said to be of finite rank at zo. If zo is

a finite point and equation (9-39) is of finite rank at z0, the smallest number r
such that both

p=O((z-zo) -¢r+') ) and q=O((z-zo)-2¢r+l)) as z--> z0

is called the rank of equation (9-39) at z0. The rank of equation (9-39) at
z-- _ is defined to be the smallest number r such that

p=O(z_-l) and q= O(z2¢r-1)) as z-->

provided the equation is of finite rank at _. If the equation has a regular

singular point at z0, it is said to be of rank zero.
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For example, since the coefficients of the equation

zw" q- w' -4- w = 0

satisfy the conditions

p=O(z -1)

p _;_ O(Z -1)

as z---_ _

(9-40)

we see that this equation is of rank 1/2 at z= _.

Now suppose that equation (9-31) is of rank r > 0 at the point zo. In order

that equation (9-35) possess a formal solution of the form (9-32a) when zo is a

finite point, it is necessary that the highest negative power of z--zo in q+ exceed

the highest negative power in p+ by no more than 1. And if equation (9-35) is

to possess a formal solution of the form (9-32b) when z0 = _, it is necessary

that the highest power of z in q+ be less than the highest power of z in p+.

Suppose that zo = _. An examination of the expression obtained by substituting

equation (9-34) into equations (9-36) and (9-37) shows that q+ will always

contain higher powers of z than p+ unless the numbers con and s in equation

(9,34) can be chosen to cancel out the coefficients of those powers of z in q+

which are larger than, or equal to, those in p+. This can be done only if the rank

r of equation (9-31) is an integer. And the maximum value of s necessary to

accomplish this will then always be less than, or equal to, r. The same con-

clusion applies when z0 is finite. It is usually possible to choose the numbers

co, and s so that the cancellation is accomplished in more than one way. In

this case, we obtain two solutions to equation (9-31).

Thus, equation (9-31) will possess formal solutions either of the form

(9-38a) or the form (9-38b) at the point zo only if the rank r of this equation at

z0 is an integer. The function 12(z) is then given by equation (9-34) with s <_ r.

Since equation (9-40) is of rank 1/2 at z= 0% it does not possess a normal

solution at this point.

As an example of an equation which does possess such a solution at z = _,

consider the equation

w" + q (z) w = 0 (9-41)
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q(z) = £ q,_-n
n=O

(9-42)

and

qo # 0 (9-43)

We see in view of condition (9-43) that equation (9-41) is of rank 1 at z = _.

Hence, we make the change of dependent variable

w = enu (9-44)

where, since s _< r-- 1,

_'_ : O.) lZ (9--45)

And upon substituting equations _9-44) and (9-45) into equation (9-4!) we
find that

u" + p+ (z)u' -4-q+ (z)u = 0 (9-46)

p+(z)----2tOl and q+(z):to2-4-qoA - _ qnz -n. The highest power of zwhere

n=l

which occurs in both p+ and q+ is zero. Hence, the highest power of z which

occurs in q+ can be made less than the highest power which occurs in p+ by

choosing to1 to be a root of the equation

to2+qo=0

But the two roots of this equation are to1,1 = iqlo/2 and tol,2_---iqlo/2. And each of

these roots leads to a different form of equation (9-46). Thus, we obtain the

two equations

271



DIFFERENTIAL EQUATIONS

u'_ if- 2iq_/2u'l-4 - q( z ) u l ----0 (9-46a)

where O(z)= _ q_-".
,/l= 1

solutions of the form

u2-- 2iq_/2u2 + _(z)uz = 0 (9-46b)

But we know that these equations possess formal

and

Ul=Z_ _ a_-" (9-47a)
rt=O

u2 =z p2 _ bnz-" (9-47b)
n=O

where p l and p2 are each solutions of linear indicial equations and the coeffi-

cients a. and b. can be calculated successively from a recurrence relation of

the usual type.

Thus, for example, upon substituting equation (9-47a) into equation

(9-46a), shifting the indices, and collecting coefficients of like powers of

z in the usual way, we obtain

oo

(p,--n+2) (pl--n+ l)an-2z-"
/1=2

/1=1

n-4- 1)an-1 -4- _ qkan-k = 0
k=l

And after equating to zero the coefficients of like powers of z, we find that for

n = 1 (since ao # 0)

2iq_/Zp_ + ql = 0 (9-48)
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[2iq_/Z(pi--n+ 1) +ql].an_,=--(p,--n+2) (p,--n+ 1)a,-2

-- _ qka,-k for n=2, 3, . . . (9--49)
k=2

Equation (9-48) is the usual linear indicial equation. And substituting this

into the recurrence relation (9-49) shows that

-8iq_/2(n - 1)an-_=[q,+ 2iq_/2(n-2)] [q,+ 2iq,_/2(n - 1) [a,_,.

It

--4q0 _=zqka,-k for n = 2, 3, (9-49a)

This recurrence relation will either terminate or else it will determine the

an so that the series (9-47a) diverges.

In any event, the two formal solutions (9-47a) and (9-47b) will now

provide, through equations (9-44) and (9-45), two normal solutions to

equation (9-41), say wl and w2, which are given by

Wl _ e o z zPl CtnZ -n
n=0

--" I11w2 = e "o z zOe bnz -n
n-O

(9-50)

Note that if condition (9-43) did not hold (i.e., if q0 = 0) but the condition

ql # 0 did hold, then equation (9-41) would be of rank 1/2 at z = _. In this

case, it would not be possible to carry out the procedure just described.
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9.6 SUBNORMAL SOLUTIONS

We have seen that if equation (9-31) is of rank r with r > 0 at the point

z0, it will have a formal solution of the form (9-38a) or (9-38b) only if r is an

integer. However, a change of independent variable of the type

= / (z - zo)

[Z_/k

if z0 is finite

if z0 =

where k is a positive integer, will usually transform an equation of fractional

rank into one ,whose rank is an integer. The formal solutions obtained by this

procedure are called subnormal solutions.

Thus, we have shown that equation (9-41) in the preceding example has

rank 1/2 at _ when condition (9-43) does not hold but the condition ql # 0 does

hold. That is, the equation

w"+ q(z)w= 0 (9-51)

where

q(z) = _ qnZ -n
n=l

(9-52)

and

ql # 0 (9-53)

has rank 1/2 at z= _ and, therefore, does not possess a normal solution at this

point. However, upon making the change of variable _ = z _/2, equation (9-51)

becomes

d2 w 1 dw

d_ 2 _ d_
+Q(_)w=0 (9-54)
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Q(_) =4 _ _-2(.-1, q,, (9-55)
n=l

And since this equation is of rank 1 at _= _, we introduce the change of

variable

to obtain the equation

w = e'°i_u (9-56)

d 2 u du
+ (9-57)

where

Then by putting

1

P1 (_) =--'_+ 2oJ1

QI(_) =-_+to_+4ql +4 _] qn_ -2(n-1)
rt=2

co2 + 4ql = 0 (9-58)

we find that the highest power of _ which occurs in Q_ is less than the highest

power which occurs in P1. And, as in the preceding example, corresponding

to the two roots ___i2q_/2 of equation (9-58) we obtain the following two equa-

tions from equation (9-56):

d2Ul iq_/2
d_ 2 (_--4iql/2) _-_+4 [--_-- + ._--_2qn_-2(n-1)] Ul =0
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d2u2 ( l_4_4iq_/2 ) du2 [--iq_/2 ]d/_2 "_ --_-'+ 4 2_____+ _ q._-2(.-,)
n=2

U 2 _ 0

But we know that these equations possess the formal solutions ul =_pl £ an_ -n
n=0

and u2 = _o2 _ bn_-n, whose coefficients can be calculated recursively in the
n=0

usual way. And therefore equation (9-51) possesses the two subnormal solutions

Wl-_ ei2q]/2zl/2z(pl/2) _ artg -n/2
n=O

(9-59)

W2---- e-i2q]/2zl/2z(P2/2) 2 "bnZ-n/2
rt=O

(9-60)

9.7 NATURE OF RIGOROUS PROOFS

The formal solutions obtained in the preceding section are asymptotic

expansions of certain solutions to the differential equations. One method

for actually proving this was developed by G. Birkhoff. In this method the

leading terms of the partial sums of each formal solution are used to con-

struct a homogeneous differential equation whose solution is known and which

in a certain sense is close to the given equation when z is near 9s z0. This equation

is then used to construct a singular integral equation whose solution also satis-

fies the given differential equation. It is then proved that the solution to this

integral equation possesses an asymptotic expansion which coincides with

the formal solution obtained by the methods discussed previously. For a de-

tailed discussion of this method, in which equation (9-41) is treated to illustrate

the general principles, the reader is referred to reference 32.

9.8 CONNECTION OF SOLUTIONS: STOKES PHENOMENON

In the preceding examples, we have shown how to obtain the asymptotic

expansions as z _ c¢ of two solutions to a differential equation of the type

_sWithout loss of generality, the point z0 (about which the solutions are obtained) is taken as _.
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(9-41). The problem frequently arises of connecting these asymptotic expan-

sions with an expression 99 for some given solution to the differential equation

which is valid for small values of z. We know, in general, that the asymptotic

expansion of any given solution w to equation (9-41) can be expressed as a

linear combination of the two asymptotic solutions (9-50). However, it usually

turns out that the particular linear combination of these two asymptotic solu-

tions used to represent the asymptotic expansion of the given solution w must

be changed as the variable z crosses certain "critical rays" in going from one

sector of the complex plane to another. This is the Stokes phenomenon which we

have mentioned previously.

For example, the change of variable

W= z-1/Zw (9-61)

transforms Bessel's equation

into the equation

z2W " + zW' + (z 2 - p2) W = 0 (9-62)

1 p2 )w"+ 1 + 4
z------W- w=0 (9-63)

which has the form of equation (9-41) with the coefficients in equation (9-42)

given by

1
q0 = 1 ql=0 q2=_--p 2

qn _ 0

and

for n= 3, 4, 5, . . .

(9-64)

Such as a power series expansion.

277



DIFFERENTIALEQUATIONS

And if we choose the arbitrary constants a0 and b0, respectively, to be

(2) 1/2 1 e-i[(Prr/2)+(_r/4)] }

ao _

(2)l121ei[(lrtr/2)+(vi/4)]bo=

it is easy to show that the formal solutions (9-50) become in this case

(9-65)

where

(2) l/21ei[z-(Plr/2)-(_/4)] _ an(-- i) nzn (9-66)
Wl : _ n=O

w2 = -_ e -i["-¢p'_/2)-_'_/4)1 a.(i) "z n (9-67)
n=O

an =

2nn!

Hence, the asymptotic expansion of any given solution W of equation

(9-62) can be expressed as a linear combination

_fr (Z) _ C1Z-1/2Wl (Z) -Jr- C2z-1/2w2 (z)

of the functions (9-66) and (9-67) muhiplied by Z -1/2. Let us choose the solution

W(z) to be the Bessel function of the first kind Jp(z). Then equation (8-37)

shows that for- ¢r < arg z < or, C1 = C2 = 1 and

Jp(Z) ,._z-1/2Wl(Z)-._--z-1/2w2(z) --_< argz< 7r (9-68)

This representation does not apply along the critical ray arg z = or, that is,

along the negative real axis. To find an asymptotic expansion which is valid

in a region which includes the negative real axis, put
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z = e'_izl (9-69)

Then since arg z=zr+arg zl, arg z varies between 0 and 27r as arg zl varies

between -- 17" and zr. And it follows from the definition (8--27) of the Bessel

function that

Jv(z)=Jv(e'%l)=e'_pijp(z,) for larg zll < zr

But arg z_ is in the range where Jp has the asymptotic representation (9-68).

Hence,

Jp(z) - e'_iVz-ii/2w,(z,) + e'_ipz?'/2wz(z,) for larg zll < zr

And since equations (9-66) and (9-67) show that

w,(z,) = e-i[u'_+¢'_/2)lWz(Z) w2(z,) = eit_+¢'_/2)lwi(z)

it follows that

Jv(z) _ z-1/2w2(z)-e2"_iVz-i/2w_(z) for 0 < arg z < 2zr (9-70)

Comparing equations (9-68) and (9-70) shows that different linear com-

binations of w_(z) and w2(z) must be used to represent the asymptotic expan-

sion of Jr(z) in the sectors - ¢r < arg z < ¢r and 0 < arg z < 2zr. And, equa-

tions (9-66), (9-67), and (9-70) show that

o)Jv(z) _ e _rip+(3cri/2) sin z + 2 4

to one term, for 0 < arg z < 273" (9-71)

Since in each region of the complex plane one of the functions, w_(z) and

w2(z), will be exponentially small compared with the other, the expansions

(9--69) and (9-70) will be equal to one another, with exponentially small error,

in every region where they are both defined.
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CHAPTER10

ExpansionsinSmallandLargeParameters:
SingularPerturbations

Many of the differential equations encountered in practice contain param-

eters. Although it frequently happens that we cannot find the exact solutions

to these equations, the behavior of these solutions for large or small values of

the parameters is often physically important. In such cases we are content to

find asymptotic representations of the solutions which are valid for these

limiting values of the parameters. A number of techniques for obtaining such

expansions are given in this chapter. Since no formal theory has been developed

for many of these techniques, the approach of this chapter is necessarily

heuristic and the material is frequently presented by means of examples.

On the other hand, the ideas developed herein are quite general; and they

apply not only to ordinary differential equations, but also to partial differential

equations, integral equations, and even difference equations.

10.1 NONSINGULAR EXPANSIONS OF SOLUTIONS

The general second-order homogeneous linear equation containing a

large parameter h is of the form

dx 2d2---y+ p(x, _) -_x + q(x, k)y=O (10-1)

We suppose that p(x, _) and q(x, _) have (at least formal) power series ex-

pansions in k. If these expansions contain only nonpositive powers of k, say
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p(x, _.)= _ pn(x)h-" (10-2)
rt=O

q(x,k)-- _ qn(x)k -n (10-3)
n=O

then the solutions to equation (10-1) will have a formal power series expansion

of the form

y(x)= _ y,(x)_. -n
n-=O

(10-4)

where the functions y,,(x) are determined by substituting the expansion

(10-4) into equation (10-1) and equating to zero the coefficients of like powers

of )t to obtain

d2yn _-po(x) dyn+qo(X)yn= --n_l [ pn_k(X)-_xk +qn_k(x)yk ]dx2 _ k=O

for n=0, 1, 2, . (10-5)

and the sum on the right is omitted for n = 0. These equations can, at least in

principle, be solved successively for the coefficients y,,. If the series (10-2)

and (10-3) converge, it can be shown (ref. 4, p. 126, ex. 6) that the series (10-4)

will also converge. In any case, the formal series (10-4) will usually be an

asymptotic expansion.

However, if the formal power series expansion for either p(x, _) or q(x, _)

involves any positive powers of k, the expansion of the solution in powers of

_. will, in general, involve infinitely many positive and negative powers of k;

and it will not be possible to solve for the coefficients successively. Neverthe-

less, it is still possible in certain instances to obtain formal solutions whose

terms can be calculated successively by using a technique analogous to the

procedure used in the preceding chapter to obtain solutions at irregular singular

points. These solutions will not, in general, be convergent series; but they

will be asymptotic expansions. Thus, consider the equation

a2ydx 2 4-p(x, _.) +q(x, k)y=O (10-6)
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where

p(x, x) = p (x)X k-"
n=0

(10-7)

q(x, X) = _ qn(x)h 2k-n
n=O

(1o-8)

k is a positive integer, and po(x) and qo(x) are not both identically zero. Then

it can be shown by direct substitution that equation (10-6) will possess two
formal solutions of the form

y = e atx) _ yn(x)X -n (10--9)
rt=0

where

k-1

l_(x) = _--o t°"(x)Xk-" (10-10)

The coefficents y, and to, can be calculated by solving successively the set

of ordinary differential equations which is obtained by substituting the assumed

solution (10-9) into equation (10-6) and equating to zero the coefficients of

like powers of h.

In order to illustrate these ideas, consider the differential equation

d2y-4- [h2qo(x) -4- q2(x) ] Y= Odx2 (10-11)

which was first discussed by Liouville in his classical investigations of the

Sturm-Liouville problems.

Since in this case k = 1, the differential equation will possess formal
solutions of the form

y = e _o¢x)x _ y.(x)h-" (10-12)
"=0
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After substituting this into equation (10-11) and collecting terms, we find that

(y_, + q2yn))t -n "4- _ (2to_y" + ojtt't"n) _l-nO." + _ (qo + too2)yn )t2-n 0
n=O n=O n=O

But upon shifting indices, this becomes

, t OJ" x _2-n
2 (Yn-24- qzyn-2) )t2-n "4- _ (2to0Yn_ 1 -4- oYn-1)
n=2 n=l

+2
n=O

And by equating the coefficients of the like powers of )t to zero, we get

(qo 4- to_)e)yo = 0 for n = 0 (10-13)

I I II2tooYo + tooyo + (qo + to_2)y, = 0 for n = 1 (10-14)

(qo 4- toto2)yn_.2-n = 0

and

" 2to' ' to"Yn-2 4- q2Yn-2 4- oYn-, + oY--1 4- (qo + too2)yn = 0

In order to avoid

Hence, equation (10-13) becomes

,2 0qo 4- too =

When this is used in equations (10-14) and (10-15), we obtain

the trivial solution y=0, we must require that yo # 0.

(10-16)

2to3o+ to3o= o

t t tort tt2tooy,,-1 4- oY.-1 _- -- Yn-2 -- q2Yn-2

(10-17)
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In the case of the differential equation (10-1) we had to solve the set of

second-order differential equations (10-5) to determine the coefficients y,;

whereas, in this case it is only necessary to solve a set of first-order equations? °°

Since q0 # 0 equation (10-16) will have two distinct solutions, say COo,, and

too, 2, given by

oo,l=+ f v -qo dx (10-18)

tO0, e = -- f N/_-- q0 dx (10-19)

Corresponding to each of these roots, we will obtain a different set of

equations from equations (10-17) and, therefore, equation (10-12) will yield

two different formal solutions to equation (10-11). It is proved in reference

32 (p. 83), that these two formal solutions are actually asymptotic expansions

of two linearly independent solutions to equation (10-11) in any finite interval

a < x < b in which q0 does not take on the value zero. The first equation

(10-17) will yield the same equation for both of the roots (10-18) and (10-19).

Thus, when equation (10-16) is substituted into the first equation (10-17),

we obtain the separable equation

yo+( )\ 4qo yo = 0

which is easily solved to obtain

y0 = constant x q_-1/4 (10-20)

Equations (10-18) to (10-20) can now be substituted into equation (10-12)

to show that the general solution of equation (10-11) in any interval a < x < b

where qo(x) # 0 has the asymptotic expansion

[ -- P _ 1/4_-xf _-_dx
y Clq_l/4e_j V-q°d" "4-t.A2{/0 _ _ to one term (10-21)

1ooThis situation is analogous to the reduction of the indicial equation from a quadratic to a linear equation in
going from a regular singular point to an irregular singular point.
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where C1 and C2 are arbitrary constants. Thus, qo(x) must be either strictly

positive or else strictly negative for all a < x < b. If q0 is strictly negative, the

constants of equation (10-21) can be redefined slightly to obtain

Y -- C3 (_qo ) _l/4e_f ___dx _4_ C4 (_ qo )_l/4e_X f _-_dx

to one term, for qo(x) < 0 (10-22)

And if qo(x) is strictly positive for all a < x < b, the constants can be redefined

to obtain

y _ Clq_ 1/4 sin (_ f _/-qoqodx) "4- C2qo 1/4 cos/ ,f
to one term, for qo(x) > 0 (10-23)

Notice that the asymptotic solution (10-22) has a monotonic behavior,

while the asymptotic solution (10-23) has an oscillatory behavior.

10.2 TRANSITION POINTS

Now let us consider the case where qo(x) is equal to zero at a single point,

say xo, in the interval a < x < b. And suppose, in addition, that qo(x) and

q2(x) are analytic at x0. Then qo(x) and qz(x) must have the expansions

qo(X) = qo,, (X--Xo) -4- qo,2(X--Xo)2 A -. . . (10-24)

qz(x) = q2,0+ q2,1 (X--XO) "4-... (10-25)

about the point x=xo, and we shall require for definiteness that qo,1 # O.

Thus, the point x0 is an ordinary point of the differential equation (10-11).

Every solution to this equation must, therefore, be analytic at x0. But in view

of equation (10-24), equation (10-21) implies that

y=O((x-xo) -1/4) as x ---> x0 (10-26)

Hence, the asymptotic expansion (10-21) cannot represent an analytic func-

tion in a neighborhood of xo and, therefore, it certainly cannot be the asymp-

totic expansion of any solution to equation (10-11) in the neighborhood of

this point.
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However, for any positive number 8 (no matter how small), equation

(10-21) provides a valid asymptotic expansion, to one term, of the general

solution to equation (10-11) both in the interval a < x < x0- 6 and in the

interval x0-4-8 < x < b because qo(x) does not vanish in either of these

intervals. Since equation (10-24) shows that qo(x) is not tangent to the

x-axis at x0, it must cross the axis at this point and must, therefore, be positive

in one of the intervals. The solution to equation (10-11) will then have the

asymptotic expansion (10-23) in this interval. In the other interval, qo(x) will

be negative and equation (10-11) will have the asymptotic solution (10-22).

Thus, the asymptotic solution to equation (10-11) will have an oscillatory

behavior on one side of Xo and will have a monotonic behavior on the other side.

The transition from one type of behavior to the other takes place in a small

region centered at x0. The point x0 is, therefore, called a transition point, lol

When the second equation (10-17) with n=2 is solved for y_(x) and

equations (10-16) and (10-20) are substituted into the result, it is found

from equations (10-24) and (10-25) that

yl=O( (x-xo) -7/4) as x ---> Xo

But equation (10-26) shows that y0 is of order (x-xo) -_/4 as x-->xo. Hence,

the second term in the expansion (10-12) will be approximately equal to the

first term when

I(x-xo)-'"l = x-'l(x-xo)-7/41

that is, when the distance between x and xo is approximately Ix --xol _ X-2/3.

Thus, when the distance between x and xo is less than or equal to ;t -2/3, the

order of the terms of the expansion (10-12) will actually increase with increas-

ing n. This shows that the asymptotic expansion breaks down in a region of

radius h -2/3 about the point x0. It is, therefore, said to be a nonuniformly valid

asymptotic expansion.

In order to obtain an asymptotic expansion which is valid in this region, we

rescale the independent variable so that it will be of order 1 therein. That is,

we introduce the new independent variable

_:= (x - xo) X2/3 (10-27)

101The term turning point is also used. This term arises from the application ofeq. (10-11) to classical and quan-

tum mechanical wave reflection problems.
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into equations (10-11), (10-24), and (10-25) to get

d2y 1
y=0 (10-28)

---_+"o, _:2qo(k-_/a)=qo,, k2/a -1 2-_+. • • (10-29)

and

--_+
q2( _-_2/a)--q2,o+q2,1)t2/3 . (10-30)

Then upon substituting equations (10-29) and (10-30) into equation (10-28)

and neglecting terms which are small for large values of k, we get

d2Y + q0, l_:y = 0
dsr 2

(10-31)

The solution to this equation should be "close" to the true solution to equation

(10-11) at least in the region

IX--Xol < k -2/a (10-32)

or I_1 < 1. Hence, it should represent the first term of the asymptotic expan-

sion of the solution to equation (10-11) in the region (10-32).

The differential equation (10-31) is a form of Airy's equalion (ref. 29,

section 6.4) which can be transformed by the change of variable

2
r g= V qo,,y=

into the Bessel's equation
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2d2Y dY 1 )2

(see eq. (8-24)). Thus, the general solution to equation (10-31) is

1/2 2

•r 2 )  10-33 
where D1 and D2 are arbitrary constants and the normalization factor (7rkl/3/3) 1/2

has been inserted for convenience.

Let us now suppose, for definiteness, that

qo, 1 > 0 (10-34)

Then solution (10-22) will hold in the region a < x < Xo - 8 and the solution

(10-23) will hold in the region Xo + 8 < x < b, where 8 is some arbitrarily

small positive constant. The solution (10-33) holds in some region which is

centered at x0 and has a size at least of order k-2/3. Having found the pieces

of the solution which apply in the three regions into which the interval a < x < b

has been divided, it is now necessary to match up these pieces across the ad-

jacent regions to form one continuous solution. These pieces of the solution

contain altogether six arbitrary constants. Four of these will be determined by

the matching requirement. The other two must remain arbitrary if we are

to obtain an asymptotic expansion of the general solution to equation (10-11).

In order to accomplish this matching, we suppose that the regions of validity

of the various pieces of the solution can be extended in such a way that any

two adjacent regions overlap one another. Thus, we assume there is an "over-

lap domain" (or intermediate region) in which both the expansions (10-22)

and (10-33) are asymptotic expansions of the solution to equation (10-11)

and that there is an overlap domain in which both the expansions (10-23) and

(10-33) are asymptotic expansions of the solutions to equation (10-11) (see

289



DIFFERENTIALEQUATIONS

Regionof applicability of solution (10-33), "inner region"

"Outer region", region of ap- "Outer region", region of appli-

plicability of solution (10-22) cability of solution (10-23)
f f

.\ k \ k \ \ VVVVV //./// /Vk/VkAA \\ \ \ \\ \ _
\ \ \ \ \ VVVVVV //x////VVVV_ \ \ \ \ \ \ \ \-b

u
Overlap Overlap
domain domain

FIGURE 10-1.--Regions for transition-point expansion.

fig. 10-1). We therefore require that within the overlap domains the two

adjacent expansions agree with each other to within an error which is of

smaller order than the last term retained in these expansions.

Since the size of the region in which the solution (10-33) applies (which

we will call the inner region) approaches zero as h---> _, the location of the

two overlap regions must also approach Xo as h ---* _. Now in the outer regions,

the asymptotic expansions correspond to holding the variable x fixed and

taking the limit h---> _. In the inner region, the asymptotic expansions corre-

spond to holding the variable _:= (X-Xo)h z/3 fixed and taking the limit h --* ¢_.

This limiting process allows the coordinate x in the inner region to move toward

x0 as the size of this region shrinks to zero. Thus, the matching can be per-

formed in a precise manner by introducing into both the inner and outer ex-

pansions an "intermediate variable"

(10-35)

with ¢x chosen so that a fixed value of 7/will remain in the overlap region as

this region shrinks toward x0 with increasing _.. The matching of the adjacent

expansions is then accomplished by changing their independent variables

from x and s¢ to _ and then requiring that these expansions become identical

(to the appropriate order in X-l) when the limit _---> = is taken while holding

fixed. However, if 7/ is to lie in the overlap regions, we must require that

2

0 < tx < _ (10-36)
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Now in order to apply the matching procedure to this problem, we intro-

duce the new variable (10-35) into equation (10-33) to obtain

2 ala/2}

1/2 2

+(_t _-_) D2"0_/2J-_/3{gX/-_qo,_ 3/2_-[(2/3_-_13/2} (10-37)

First, suppose that 7/> 0. Then equation (8-37) shows that in the limit _--*

with "0 fixed

(_o),/, {2_ ,_13/25°1y-- qo,171 O1 COS _ --T2

+ (_o)l/, (2 °tq0,171 D2 cos -_ _qo,1T_3/2_ [(2/3)-a]3/2- to one term

(10-38)

But for _/< 0 we find that T_3/2=ei(31r/2)lT_]3/2 ; and therefore the argument of

the Bessel's function in equation (10-37) is no longer in the range where equa-

tion (8-37) holds. We must, therefore, use equation (9-71).

In this case, we see that in the limit as _--* o0 with T/fixed

1( _o),/, {2 1

1( _o),/, {2 }+2 qo_[],[ (Dle-i'16+ D2e i_16) exp --_ '_/'_qo, 11_13/_x_/3-'*/_

to one term (10-39)
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Next substituting equation (10-35) into equation (10-23) and neglecting

the higher order terms in _-1, we find that

Y- \ qo.,_ Cl sin {3 V_q°'l _a/2k[{2/3'-"13/2 }

ha _ 1/4 )k[(2/S)-a]3/2 _
+(_] C2 cos {2 V_q0,1*/z/z j (10-40)

Hence, the expansion (10-38) and the expansion (10-40) will become identical

in the right overlap domain if

57T 71"
Ca = D1 sin -r-_-.+ D2 sin 1--_125

57T 7T
C2 = D1 cos 7x-_+ D2 cos

1--_1Z

and the expansion (10-23) becomes

y-Dlqol/'cos(Xfx_V_qodx -5--E_)
o 12

)
Xo

to one term, for Xo < x < b (10-41)

In order to match the solutions in the left overlap domain, we must consider

two cases. First, suppose that D1 # D2. Then the second term in equation

(10-39) is negligibly small compared with the first and may be neglected.

Hence, equation (10-39) becomes

1( ),/4 {2 /Y--2 qo_[_l (D2--D1) exp g V_qo, 1 I_l_/_xt(2/_)-_3/_

(10-42)

This must now match with equation (10-22) in the left overlap domain. It

can be seen that this matching can occur only if C3 # 0. In this case, the

second term will be exponentially small, compared with the first; and equation
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(10-22) becomes, upon substituting in equation (10-35) and neglecting

higher order terms in 1/h while holding T/fixed,

y- Ca q0,,l*71 exp _ V q0,,1_l_/2ht¢_/3_-aJ3/2

But this will match with equation (10-42) in the left overlap domain only if

Ca = (D2- D1)/2. And the solution (10-22) therefore becomes

qo,,,, I f; ) oneY 2 (-- exp h dx to term,
0

for a < x < x0 and D1 # D2 (10-43)

Next consider the case where D1 = D2. Then the first term in equation

(10-39) is zero and, therefore, the second term cannot be neglected. Equation

(10-22) will only match onto equation (10-39) in the left overlap domain

if Ca = 0 and C4 = (X/3/2) DI. Therefore, equation (10-22) becomes

y _ ---_- D1 (- qo) -1/4 exp X X/L--qo dx
o

to one term,

for a < x < x0 and D1 = D2 (10-44)

Thus, the complete asymptotic expansion of the general solution to

equation (10-11) in the interval a<x< b is given by equations (10-33),

(10-41), and (10-43) or (10-44). The expansions (10-41) and (10-43) or

(10-44) become poorer and poorer representations of the true solution as

x-+xo (they are nonuniformly valid expansions), but the expansion (10-33)

provides a good representation in this region. It is possible to obtain a uniformly

valid asymptotic expansion in the region x0 _< x < b by adding the expansion

(10--41) to the expansion (10-33) and (so that it will not be counted twice)

subtracting their common value in the transition region given by equation

(10-38). Thus, '°2

Yunnormlyvana- eq. (10-41)+ eq. (10-33)--eq. (10-38)

_o_By construction, eqs. (10-33) and (10-38) are asymptotically equal in the outer region.
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Similar remarks, of course, apply for the interval a < x _< x0. Although this

method is very general and can be used even when a larger number of terms are

retained in the asymptotic expansion, there is a better method of obtaining a

uniformly valid one-term asymptotic expansion for the present problem which,

in fact, applies to the entire interval a < x < b. To this end, notice that the

f/term X V'--@qodxbecomes asymptotically equal to the term
0

_ X q_0,1(x2 - x0)3/2 = 2 _ s_3/2

in the transition region. It is, therefore, reasonable to hope that the range of

validity of equation (10-33) (which applies for small values of 103x--x0) can be

extended by replacing 2/3 qX/_0.1 s_3/2 in the arguments of the Bessel functions by

Xfxln_qodxandreplacingthefactorXl/6V_-by,qo-1/4(_ fx:'V'-qodx) 1/zo . Upon

making these substitutions, equation (10-33) becomes

7r X x
y_q_l/4(._ fxo

(10-45)

Having obtained this result by a heuristic argument, it is now easy to verify

that, for k2/a(x-xo)=O(1), this equation a_rees with equation (10-33) to the

lowest order X-1 and, for x-xo = O(1) with x > x0, it agrees to lowest order in

X -1 with equation (10-41). Similarly, when x-xo=O(1) and x<x0, it agrees

to lowest order in X-1 with either equation (10-43) or equation (10-45), de-

pending on whether D1 is equal to D2. Thus, equation (10--45) must represent

a uniformly valid asymptotic expansion to one term of the general solution to

equation (10-11). This result was first obtained by Langer (refs. 33 to 35)by a

more formal procedure. The technique of using inner and outer expansions to

obtain a uniformly valid expansion began with Friedrichs (ref. 36) in the 1950's

and was developed by Kaplan, Lagerstrom, Cole, and many others. This

technique not only applies to linear and nonlinear ordinary differential equa-

tions but also to partial differential equations. Many of the applications of this

method have been to fluid mechanics problems. In fact, the basic ideas grew

out of boundary layer theory.

103This is because _: is of order 1 and, therefore, for large X, x must be close to x0.
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10.3 MATCHED ASYMPTOTIC EXPANSIONS

The method of using inner and outer expansions to obtain a uniformly

valid expansion can, in fact, be applied to obtain solutions in a systematic

way to certain equations which are of the form (10-6). The solution (10-9)

to equation (10-6) was obtained by essentially guessing its general form.

Therefore, this procedure is limited to equations of the type (10-6); the method

of matched asymptotic expansions has no such limitation.

The method is usually applied in such a way that it is necessary to consider

the boundary conditions along with the differential equation. The ideas in-

volved are best illustrated by means of an example. However, instead of con-

sidering an equation containing a large parameter we will now consider an

equation containing a small parameter 1o4 E. Thus, we shall seek an asymptotic

expansion as ¢ _ 0 of the solution to the equation

d2y +_ p(x) _xx+q(x)y=O (lO-46)

subject to the boundary conditions

y(0)= 1 (10-47)

y(1)=a (10-48)

and where the functions p(x) and q(x) are any functions which can be repre-

sented by power series, say

p(x)= pnxn q(x)= _ qnx n
n=O n=O

(10-49)

near x= 0, and by similar power series, say

q(x)---- _ tln(1--x) n
n=O

_°4Of course, since we can always put h= 1/e to obtain an equation containing a large parameter, there is no
real difference involved.
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near x-----1. We shah also require that

p(x) > 0 for 0 _< x _< 1 (10-50)

1
and that the integral [q(x)/p(x)]dx exists.

Since _ is small, it is natural to seek a solution to equation (10-46) in the

form of a power series in _. Thus, let us try to obtain a formal solution to equa-

tion (10-46) of the form

y(x; E)= £ y.(x)¢ n (10-51)
n=O

Upon substituting this into equations (10-46) to (10-48) and equating to zero

the coefficients of like powers of E, we find that

p(x) -_x + q(x)yo=O (10-52)

p(x) -_+q(x)yn=
d2yn - 1

for n = 1, 2, . . (10-53)dx 2

yo(O) = 1 (10-54)

y0(1)=a (10-55)

y.(O) =y.(1) =o
o

forn=l,2, . . o (10-56)

Since equations (10-52) and (10-53) are first-order linear equations, they

can be solved immediately to obtain

yo(x) = Coe-a¢x) (10-57)

yn(x)=e_a¢x)[c,+f_ _ ea¢_ _ 1 d2y.-,dx ] fo_n=l,2,...
p(x) dx 2 (10-58)
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where the C, for n=0, 1, 2, . . . are arbitrary constants and we have put

_ q(x) dxt_(x) - p(x) (10-59)

Notice that since the integral 11(0) exists by hypothesis, the integral (10-59)

must certainly be finite for all x in the interval 0 _< x _< 1.

Now, except in the very exceptional circumstance where a = ect(°), it is

impossible to choose Co so that the zeroth-order solution (10-57) satisfies both

boundary conditions. Thus, suppose that a # eat°) and, therefore, that one of

the boundary conditions (10-54) or (10-55) cannot be satisfied. We reason that,

just as the expansion (10-12) broke down at the transition point, the expan-

sion (10-51) will break down at one of the boundary points x= 0 or x = 1

and it will be necessary to obtain a different (inner) expansion in this region.l°5

This expansion must then be matched smoothly onto the outer expansion

(10-51) in some intermediate region. It is necessary to investigate the be-

havior of the asymptotic solutions at both boundaries in order to find which

one will correspond to the boundary layer region. If this is done, it will be

found that, due to the condition (10-50), it will be impossible to match any

inner solution which occurs near the boundary x = 1 to the solutions (10-57)

and (10-58). This is due to the fact that condition (10-50) will cause all possible

solutions for the region near x = 1 to grow exponentially with the distance 1 -x

and this type of behavior is incompatible with the solutions (10-57) and (10-58).

The constants C,, for n=0, 1, 2, . . must, therefore, be determined

so that the boundary condition (10-55) and the second boundary condition

(10-56) at x = 1 are satisfied. Hence, Co---- a and C, = 0 for n= 1, 2, . . .; and

the solutions (10-57) and (10-58) become, respectively,

yo(x) = ae -nix) (lO-6O)

y,(x) =--e -a(x) f_e n(x) 1 _y,,-1 dx for n= 1 2,p(x) dx 2 ' "'"
(10--61)

The functions y,(x) for n= 1, 2, . . can now be determined successively by

substituting the expression for y,,-1 obtained in the previous step into the right

side of equation (10-61). Thus, substituting equation (10-60) into equation

(10-61) with n = 1 gives

_°sWhich is frequently referred to as the boundary layer region.
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yl (x) =-- ae -fl(x) fx p(x)l [r 2 (x) -- r' (x) ]dx (10--62)

where we have put

r(x) =q(x)
p(x) (10-63)

and we shall suppose that the integral

f0 1,4= p-(x) [r2(x)-r'(x)]dx (10-64)

exists.

Unlike the situation which occurred at the transition point, the zeroth-

order solution remains bounded at x= 0. In fact, its limiting value is ae -a(°).

But in order that the boundary condition (10--47) be satisfied, it is necessary

that the asymptotic solution change from the value 1 to the value ae -a(°) across

the boundary layer region. Now we anticipate that the expansion (10-51) qcill

hold over most of the region 0 _< x _< 1 but that it will break down in a narrow

region near x = 0 whose thickness approaches zero as e---> 0. Since the asymp-

totic solution y must change from ae -a(°) to 1 across this very narrow region,

the derivatives y' and y" must become very steep (large) in this region. How-

ever, in assuming that the solution had an asymptotic expansion of the form

(10-51), we were essentially treating the terms y", py', and qy in equation

(10-46) as if they were of order 1. In order to overcome this difficulty, we pro-

ceed just as in the case of the turning point and rescale equation (10-46) in a

manner which is appropriate to this boundary region by introducing a new

"stretched" independent variable £ by

X

x= cb(e) (10--65)

where lim 6(e) = 0 and the function 6 is to be chosen so that it is of the scale
_--*0

of the boundary layer region. In this case, however, it is necessary to determine

the scaling function 4) in a different manner than in the case of the turning point.

Thus, upon substituting equation (10-65) into equations (10-46) and (10-49),
we obtain
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,E __+p(q,(_)x)_+q(6(_)x)y =o (10-66)

where we have put p(_; e)=y and, in view of equations (10-49) and (10-50),

p(6(e)x)= po + p,6(e)x + p,_(_)x_ +.. }q(_b(_)_)= qo + ql_b(_)x -t- qz6Z(e)_ z + . . ."
for P0 # 0

(10-67)

Now in order that the inner solution satisfy the boundary condition at

x = 0 and still contain another constant which can be adjusted to match the

outer solution, we must require that the equation which is satisfied by the

lowest order term in the expansion of the solution in the inner region (the inner

expansion) be of second order. This equation is obtained by holding x" and p

fixed and taking the limid °6 e--+ 0 in equation (10-66). However, the limiting

form of this equation depends on the choice of the function 6 (e). And in order

that the highest order derivative be retained in this equation we must require
that

_b=O(E) (10-68)

If the condition _b=o(e) also held, the second and third terms of the

limiting equation (10-66) would drop out and we would be left with the equation

d2_- 0 (10---69)
6z(_) d_ z --

However, if we require that

6#o(E) (10-70)

then both the first and second terms will be retained in the limiting form of

equation (10-66). In addition, the size of the inner region (which is determined

by _b) will be larger if condition (10-70) holds than if it did not hold. Thus, the

10_This limiting process is called the inner limit. The limit taken while holding x and y fixed and letting e--+ 0 is
called the outer limit.
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solution which would be obtained by assuming that condition (10-70) did not

hold is a limiting case (for small _) of the inner solution which is obtained when

equation (10-70) does hold. We shall, therefore, assume that conditions (10-68)

and (10-70) hold. And since only the order of magnitude of _b is important, we

will lose no generality by putting (b(e)= e. Hence, equation (10-66) becomes,

upon inserting equation (1067),

d._..+. (po..__Epl_.4. E2p2_2.4_ ) dY'4- (Eqoq'-E2ql_'-_ - )_'=0 (10-71)
d_ 2 "'" d:_ "'"

We now suppose that the solution to equation (10-71) has an asymptotic

expansion of the form 107

y(_; e) - _ yn(x)_" (10-72)
n=0

Then upon substituting this into equation (10-71) and equating to zero the

coefficients of like powers of _, we obtain

d=yo dyo __
d_ 2 +po-_- 0

d2y" _-_ -d:_2 +po =H,(x)

where we have put

n--1

forn=l,2, . . .

_n-k-1

(10-73)

(10-74)

for n= 1, 2, . . .

(10-75)

And upon substituting equation (10-72) into the boundary condition (10-47),
we find that

y0(0) = 1 (10-76)

1o7It should not be concluded from the results obtained so far that the asymptotic expoasions of the solutions to

equations containing a small parameter will always he power series in the parameter. For example, logarithmic terms
could occur.
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y,(0) = 0 for n= 1, 2, . . . (10-77)

Since equations (10-73) and (10-74) do not contain the dependent variable

explicitly, they can easily be integrated by the methods of chapter 4 to obtain

yo=_o+boe -pa

_" --P_, 1 f_ - -y,=e,+ one -t--- [1 -- eP°_Y-X)]Hn (y)dy
JoP0

forn=l,2, . . .

which become, after applying the boundary conditions (10-76) and (10-77),

yo----_0-t-(1--_o)e_Pa (10-78)

yn= e,( 1 _e-_) +lpo f_
o*(Y-_)

[1 --e ]//, (y)dy forn=l,2, . . .

(10-79)

We can again determine the functions y,, for n= 1, 2, . . . successively by

substituting the expressions for Y,-1 obtained in the previous step into the right

side of equation (10-79). Thus, upon substituting equation (10-78) into the

right side of equation (10-79) with n= 1 and carrying out the integration, we

obtain

Yl=cl(1 - e-p°_)+

where we have put

plpo ) qoqo-- Pl -_ • -- _o_ _

(10-80)

1
c,=_1+--; [(1--_o)(pl--qo) + _oqo]

P_
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As in the case of the transition point, we now suppose that there is an

overlap domain in which the outer expansion (10-51) and the inner expansion

(10-72) both apply and that within this overlap domain, these two expansions

agree to within an error which is of smaller order than the last term retained.

In order to perform this matching, we introduce an intermediate variable

x E._

x+ v(¢) v(¢) (10-81)

into both the inner and outer expansions. The scale factor v(_) is determined

so that the variable x + is of order 1 in the overlap domain. Since the size of

the overlap domain must approach zero as E _ 0 and since it must be farther

away from x = 0 than the inner regions whose size is O(e), we must require that

_= o(v) (10-82)

and

v=o(1) (10-83)

To proceed with the matching, we then reexpand the first m terms for m = 1,2,

• . . of both the inner and outer expansions while holding x + fixed and then

require that the difference between these two expansions be of o (¢m-1). That

is, the inner and outer expansions are asymptotically equal in the overlap

domain to the appropriate order. Hence, we require that

yo[v(e)x+] + Eyl[v(E)x +] +...+E"y,,[v(e)x+]--_'o[_-_)x +]

for n = 0, 1, 2, . . . with x + fixed (10-84)

Thus, for example, when n= 0, this becomes

=o(1,"as _ --_ 0 with x + fixed (]0-85)
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And when n-- 1, it becomes

yo [v(_)x+ ] + _yl [v(_)x+ ] - Y'o [ v---_x+_ ]--_Y'I [ E-_x+ ]= o(_)

Now since

,,x+ q(vx+)n[v(E)x+] =
.,1 p(vx+)

as _ --_ 0 with x + fixed

f t'x+ fl 0
v dx+= q(_¢) ds¢= q(s ¢) ds¢

_, p(_) _-_

(10-86')

fo _x+ q(_) qo+ ds¢ = _(0) + v(_)x + -rio -4- 0 (v 2)p(_)
I"3

it follows, upon expanding the exponential, that

e-ll[r(Ox+ l= e-fl(°)e-rx*(q°/P°)+ O(r2)= e-fl(°) [ 1- t'(_) Poq---q°x+ +O (v2 ) ]

And, the solutions (10-60) and (10-62) therefore become, respectively,

[ qo ]yo[v(¢)x + ] = ae -a(°) 1 -- v(_) _ x++O (9 2) (lO-87)

Yl [V(E)X + ] = ae -a(°) [.4 +0 (v) ] (10-88)

where definition (10-64) has been used. On the other hand, the solution (10-78)
becomes

But, since equation (10--82) shows that
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• --*0 E

this becomes

yo [-_x+ ] = eo + exponentially small terms

Similarly, the solution (10-80) becomes

Yl[ v(_) x+] = _1 - _° "q° _'(_) x+ + exp°nentially small terms• p0

(10-89)

(10-9o)

Equations (10-87) and (10-89) now show that

yo[v(_)x+ ] --y'o[ _) x+ ] = ae-a(°)-_o +O (v)

since the exponentially small terms are of lower order than any power of v. But

since lim v(e) = 0, this shows that the zeroth-order matching condition (10-85)
will be satisfied provided that

Co = ae-a(°) (10-91)

Similarly, equations (10--86) to (10-90) show

(10-91) that

upon substituting in equation

ae ae qo-- 1) -_ X +) -- e'C'l-4- 0 (1) 2 )

= • [e-n(°)aA -- _'1] + 0 (ly2 )
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Hence, the first-order matching condition (10-86) will now be satisfied if we put

_1 = ae-n¢°)A and choose the scaling function v so that

v 2= o (10-92)

Notice that v must simultaneously satisfy conditions (10-82), (10-83), and

(10-92). There are many choices of v which will accomplish this. For example,

we can take v(c)= _2/3.

We have now obtained the following results: In the outer region, the expan-

sion to two terms is

y(x; _) _ ae -n(x) {1 ff 1 r' }+ _ p(x-----_[r2(x) - (x) ]dx+ . . . (10-93)

In the inner region, the expansion to two terms is

plpo£
'(£;e)_e-P°_{[1--ae-n(°)][l+_---_( q°-plp0 2 )] - ae-n(°)_4

( )+ae -n(°) I+¢A poE£ + . . . (10-94)

And in the overlap domain, both of these expansions take on the common

value Yt given by

( qo)Yt _ ae -n(°) 1 + _/--_-_ ¢£ (10-95)

As in the case of the transition point, we can obtain an expansion which

is valid everywhere in the interval 0 <_ x _< 1 (that is, a uniformly valid expan-

sion) by adding the inner expansion to the outer expansion and, so that it will

not be counted twice, subtracting their common value in the overlap domain.

Thus,

{ }Yuniformly valid -- ae -n(x) 1 + _ p(x) [r 2 (x) -- r' (x) ]dx

- _£ plp0 )]- ae_n(0) eA }q-e-p°x{[1-ae-n(°)] [l +P--° ( q°-pl 2
+... (10-96)
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Of course, we have not actually proved that equation (10-96) is indeed an

asymptotic expansion of the solution to equation (10-46) subject to the boundary

conditions (10-47) and (10-48). However, it is common practice in applied

mathematics to accept an expansion obtained by a formal procedure (such as

those given in this section) as being a true asymptotic expansion of the solu-

tion to the problem. Indeed, most problems which are treated in practice are

too complicated for rigorous proofs to be carried through.

We emphasize again that this method applies to nonlinear equations just

as well as to linear equations.

10.4 METHOD OF STRAINED COORDINATES

We shall now consider some additional techniques which can be used to

handle the nonuniformities that arise when asymptotic solutions are sought

to certain types of differential equations. Thus, consider the differential

equation

dZY +
toZy = _y3 (10-97)

which describes the oscillation of a mass on a spring with a weakly nonlinear

restoring force. And for definiteness, let us impose the initial conditions

y(O) = 1 dy (0)= 0 (10-98)
dt

If we attempt to find an asymptotic solution in the form of a straight-

forward power series in

y(t; _) _ yo(t) + _yl(t) -4-...

then we get, upon substituting this into equations (10-97) and (10-98) and

equating to zero the coefficients of like powers of ¢,

dZyo

dt 2 q- 092y0 0 (10-99)
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d_Yi + to2y 1 yao
dt 2 (lo-loo)

yo(O)= 1 dyo (0) = 0 (10-101)
dt

dyl

yl(0) = _ (0) = 0 (10-102)

However, the solution to equation (10-99) subject to the initial conditions

(10-101) is y0 = cos tot. And after substituting this into equation (10-100), we

obtain

-- + to2yl = COS 3 tot 3 1
----_ cos tot -4- _ cos 3tot

But since the general solution to this equation is

1 3t
Yl -- 32to 2 COS 3tot + _ sin tot + cl cos tot -4- c2 sin tot

the asymptotic solution to equation (10-97) is

[3t 1y -- cos tot -4- e -- sin tot
at 32at 2 cos 3tot + cl cos tot + c2 sin tot] 3[-- • ° .

However, the first-order term in this expansion will not be small compared

with the zeroth-order term when t _ 1/e due to the presence of the term

t sin tot in the solution• Such terms are called secular terms. The expansion

will, therefore, not be valid for large times even though it may be suitable for

calculating the solution at small times. The solution of equation (10-97) is

periodic. However, due to the appearance of secular terms, the solution cannot

be carried to sufficiently long times to calculate the distortion of the period

due to the nonlinear restoring force.

A method (based on the work of PoincarO °s) for alleviating this difficulty

10s The ideas were developed in the course of his work on periodic orbits of the planets.
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was developed by Whitham and by Lighthill (ref. 37). The method depends

upon introducing a new variable T and then considering both the dependent

variable y and the independent variable t to be functions of T. Thus,

t = t(T; _)

y= y(_'; ¢)

And we suppose that these functions can be expanded in powers of _ to obtain

t=T+Eh(T) +... (10-103)

y = yo(_') 4- Eyl(T) 4- • • • (10--104)

The arbitrariness introduced into the solution by the functions tl, etc., is used

to adjust the nonhomogeneous terms in the equations for yl, y2, • • • so that

the secular terms will not occur in the expansion. The resulting distortion of

the time scale will cause the frequency of the motion to depend on _. And this

will allow us to calculate the variation of the period.

Now it follows from equation (10-103) that

--_ , d
d_dr d 1 d-(1-eq+...) _ (10-105)
dt dt dr (l+¢t'_+...) dr

where the prime denotes differentiation with respect to T. Hence,.

a_----Z= (1 --_t_-
dT 2 .) _ (1--eta--.

(dyo•) '+ ")]

dyo= (1--2(t; +. .) 4-_ dv-----_-(t_' --d-TT4- " " "

After substituting this into equation (10-97) together with the expansion

(10-104) and equating to zero the coefficients of like powers of ¢, we obtain

d2y° 4- to2yo = 0
dT 2

(lO-lO6)
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d_yl , dZyo . ,, dyo (10-107)
dr 2 A-°j2yl=_°A-2tl -_ 2-t-t1 dr

In order to find the proper boundary conditions, we need expressions for

the values of y and dy/dt at t ----0 in terms of their values at r = 0. Thus, we use

a Taylor series expansion of these quantities about r = 0 to obtain

Y(t=O) = yl_=o+ (-_)_=oT(O) + . • •

where r(O) denotes the value of the function r(t) (obtained by solving equation

(10-103) for r as a function of t) at the point t = 0. Upon substituting in equations
(10-103) to (10-105), we find

y(t=O)=yo(O)+E[yl(O)+t,(O) (-_)_=o ]+" " "

= ,=o+ ¢ ,=o_t_(0 ) [dyo_ [dZyo_ ]t=o \ d_" /,=o + tl(O) +"\ dr 2/,=oJ

Then substituting these expressions into the boundary conditions (10-98) and

equating to zero the coefficients of like powers of _ shows that

y0(0) = 1 dyo (0)=0 (10-108)
dr

y,(0) +t,(0) dy0 (0)=0
dr
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dY--2 (0)-t'l(O) dyo d*Y---2(0)
dr -_r (0) +t,(O) dT 2

=0

or, using the boundary condition (10-108) to simplify the second group of

boundary conditions,

y,(0) =0 /dyl d2yo
dT (O)+t,(O) _ (0)=0

(10-109)

The solution to equation (10-106) subject to the boundary conditions

(10-108) is

y0 = cos tot (10-110)

This has the same form as the zeroth-order solution obtained by the regular

perturbation procedure. However, upon substituting equation (10-110) into

equation (10-107), the latter equation becomes

d2Y_ + CO2yl = COS3 COT--2CO2t_ COS COT--COt_' sin tOT
dr2

1
= _ cos 3COT+ (3 -- 2CO2t_) cos toT--cot_' sin COT

We now determine the function t_(r) so that secular terms will not appear in

the first-order solution yl. These terms arise because the solutions cos COT

and sin COTof the homogeneous equation appear in the nonhomogeneous terms.

Thus, the secular terms will not occur if we choose tl so that the coefficients of

"- ' = 3/8CO2, orthese two terms vanish. Hence, we take t_- 0, t I

3

t_ = 8CO2T (10-111)

where we have set the constant of integration equal to zero in order to simplify
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the second boundary condition (10-109). And the differential equation for y,

becomes

d2yl 1
dr--Y + tOZyl _-_ COS 3tot

Now since substituting equation (10-111) into the expansion (10-103)

shows that

3

we find upon neglecting higher order terms in s that

1
7 tA-. . .=

And when this is substituted into the zeroth-order solution (10-110), we obtain

Y0 = cos \ 8to/ t

Thus, we find that the frequency is modified by the nonlinear restoring

force even in the lowest order term of this expansion. In contrast to this, the

direct expansion leads to no information about the frequency change. The

expansion can be carried to higher orders by continuing to use the functions

t, for n = 2, 3, . . . to eliminate the secular terms. And this expansion will be

uniformly valid for all times since no secular terms will appear.

10.5 MULTIPLE-TIME METHODS

Equations which contain two disparate time or length scales are frequently

encountered in practice. This happens, for example, in problems which involve

a small force acting over a long period of time. An example of this is a spring-

mass system subjected to a weak viscous damping. The two times which occur

in this problem are the basic period of oscillation and the damping time which

occurs over many periods. The basic idea of the method is due to Kuzmark.
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And a detailed discussion of this method is given by Kevorkian in reference 38.

The presentation and examples used herein are taken from this report. The

method takes into account the long-time effects in such a way as to render

the expansion uniformly valid. As in the preceding example, it involves reason-

ing about the first-order terms to determine the zeroth-order solution.

We set up the expansion in such a way that a fast time variable t and a

slow time variable _ are explicitly exhibited. The slow variable is assumed to

be related to the fast variable by

_=_(e)t (10-112)

where lim 6(e)=0. And we suppose that the solution to the
G"'_0

equation has an expansion of the form

differential

y(t; e)_vo(e)fo(t*,_)+vl(e)fl(t*,f)+vz(e)f2(t*,f)+. • (10-113)

where {re(e)} is an asymptotic sequence as •--_ 0 and t* is another fast time

variable related to the fast variable t in such a way that it accounts for the

change in frequency that occurs in the problem. This relation is taken in the

form

t* = t[1 +/x, (e)to_ + gz (e)to2 +...] (10-114)

where {g_(e)} is another asymptotic sequence and {to_} is a sequence of

constants which are determined by the problem in such a way as to render

the expansion (10-113) uniformly valid.

The variables t* and/'in equation (10-113) will be treated as independent.

Hence, the ordinary differential equation satisfied by y will be transformed

into a sequence of partial differential equations. However, it turns out that

they can still be treated as ordinary differential equations.

Upon differentiating equation (10-113) with respect to t, we find that

--_ Oy dt* ,
dy_ (-_) ---_-t- (O---zY-_.dfdt \0 t/t dt

But since equations (10-112) and (10-114) show that
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dt*

d--i = 1 + tz, (_)oJ, + ia_(_)to2 +.

afo, aA.] _o(_)_/;_ _,(_) _+ . ]

dy_ _¢gfo [l+lx,(E)to,]+cb(()Ofol+v,(E) ¢9f_ ,
_--- v0(_) tot* Ot J -Off-+- " " "

This equation shows that changes which occur on the slow time scale ? are

small compared with the changes which occur on the fast time scale.

The method is best illustrated by considering a particular example. Thus,

consider the equation

_y (dy_ a
--d-_+Y+_l_--d-[/ =0 (10-115)

which governs the behavior of an oscillator with weak cubic damping. We

shall seek an asymptotic solution which is uniformly valid for 0 _< t _< _, subject

to the boundary conditions

y(0)=0 (10-116)

dY(0)=l (10-117)
dt

In this case, it is reasonable to begin by choosing the functions (h and the two

asymptotic sequences {v_} and {/z_} to be 6(_)=c and v_=/z_=¢_. Then
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"[= et and the expansion (10-113) becomes

y (t; e)=fo (t*,[)+efl (t*,/)+..

with

t*=t (1-4- ¢o2_2-+ - • • .)

where we have omitted the term eOJlt since we wish to ensure that ¢t only

occurs in the solution 109as i. Hence,

dy 0fo

dt at* \07 at _ /

0% , o_f, o+ 2_------:-r E-- -r (e_)
Ot*Ot Ot .2

Upon substituting these results into equation (10-115) and equating to zero

the coefficients of like powers of e, we find that

O2f° +fo=0 (10-118)
0t*2

02fl 2 0%+ Ofo _
Ot,2 4- 0--_ (_-_) +fl =0 (10-119)

And since y(0) =fo(0, 0) + _jq(0, 0) + . . . and

losThere is a certain amount of arbitrariness in the choice of the variables t* and t:
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+...

the boundary conditions (10-116) and (10-117) show that

fo (0, O) = 0 Ofo[ =1
Ot* o,o

(10-120)

0fl +Ofo =0 (10-121)
fl (0, O) = 0 Ot* o,o c9_" o,o

Now the solution to equation (10-118) is

fo (t*, i) =C0(i) sin t*+Do(i) cos t* (10-122)

where the functions Co(i) and D0(i) are arbitrary functions arising from the

integration. But substituting equation (10-122) into the boundary conditions

(10-120) shows that

Do(0) = 0 Co(0) = 1 (10-123)

As in the preceding method, we now determine the functions Co and Do

so that the first-order solution fl will not contain any secular terms. To this end,

notice that equation (10-122) implies that

Ot* -----(Co eost*-- Do sin t*) s-- C_ eos a t*--8DoC_ sin t* cos 2 t*

+ 3D_Co sin 2 t* cos t* -- D_ sin 3 t*

Henee, we find, upon using the identities
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cos z t* - 1 3 t*
= _ cos 3t* + _ cos

1 3
sin 3 t* = -- -4 sin 3t* + _ sin t*

sin t* cos 2 t*= sin t*-- sin 3 t*

that

sin 2 t* cos t*= cos t*- cos 3 t*

0fo ]3 3 . 3 t*
Ot* ] =-4 Co(C_+ D_) cos t ---_ Do(C_+ D_) sin

1 1
+ -_ Do(D_-- 3C_ ) sin 3t*+ _ Co(C2o - 3D_ ) cos 3t* (10-]2a)

We therefore find, after substituting equations (10-122) and (10-124)

into equation (10-119), that

Ot.2 -_Do(D_o+C_)+2 sint* Co(D_+C_)+2 dC°] j cos

, 1
-1D°(D2°--3C2°)4 sin 3t -_ Co(C_ --3D_) cos 3t* (10-125)

In order to ensure that secular terms do not occur in f_, we must eliminate

sin t* and cos t* from the nonhomogeneous term of this equation. This can be

accomplished by putting

dDo 3 I2--_t +-_ Do(D_+ C_) =O

dCo 3

2 --_t + -_ C o(D 2 + C 2o) = O

(10-126)
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Upon multiplying the first of these by Do and the second by Co and adding the
results, we get

d (D__t_ C_) -4-3
d-_ 4 (D_+ C_)2=0

which has the solution

1

D2o+ C2o- 3 _

-_ t +K1

where K1 is a constant. And substituting this into the boundary condition

(10-123) shows that we must take K1 = 1 to obtain

1
Do2 + C_-

3-

_t+l

(10-127)

But substituting this into the first equation (10-126) shows that

2 dD°-} 3 Do =0

df 437+ 1
4

Since the solution to this equation subject to the first boundary condition

(10-123) is Do (7) = 0, equation (10-127) becomes

1
Co _

-34_+1

where the positive square root is taken to ensure that Co satisfy the second

boundary condition (10-123). Substituting these results into the zeroth-order

solution (10-122) now shows that
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fo(t*, i)-

Hence, we obtain the one-term uniformly valid asymptotic expansion of

the solution to equation (10-115)

Y
sin t* sin t

3 _,+ 1 +_et

The procedure can be continued to obtain higher order terms, the solution to

any given order being determined by reasoning about the next higher order

terms.
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CHAPTERII

NumericalMethods

It frequently happens that the differential equations encountered in prac-

tice cannot be solved by the exact and approximate methods discussed in the

preceding chapters. In such cases it is often necessary to resort to numerical

methods in conjunction with a digital computer. These methods usually involve

replacing the differential equations by a number of algebraic equations, called

difference equations, in such a way that the solution of the difference equa-

tions is in some sense close to that of the differential equation. There are a

large number of numerical procedures available. The choice of method is

influenced by the type of auxiliary conditions as well as by the form of the equa-

tion. Thus, when all the auxiliary conditions are imposed at a single point

(initial conditions), the solution can be developed by means of "marching

techniques," which solve the difference equations in succession. These

marching solutions can be carried out either by using implicit methods such as

Euler's method and the Runge-Kutta method or by using explicit methods

such as the Adams method and the improved Euler method. Each of these

methods has advantages and disadvantages which will be discussed sub-

sequently. When auxiliary conditions are imposed at two points (boundary

conditions), it is usually possible to solve linear equations directly by using

either the superposition principle or fimte dilterence schemes which involve
matrix methods. However, when the equations are nonlinear, it is often neces-

sary either to linearize the problem or to reduce it to a set of initial-value

problems and then use iterative or matrix techniques to obtain the solution.

The subject of numerical solutions to differential equations is quite vast

and we cannot hope to cover it completely in a single chapter. For more

detailed information, the reader is referred to references 39 to 42.
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11.1 APPROXIMATION BY DIFFERENCEEQUATIONS: ERRORSAND INSTABILITY

Consider the general system of nth-order differential equations

F (y_,o, y(,,-1), . .., y, x) = 0 (11-1)

defined on the interval a _< x _< b and subject to appropriate initial or boundary
conditions.

In order to obtain a numerical solution to this system we first partition

the interval a _< x _< b. A partition of the interval a _< x _< b is defined to be

any finite set ot_points Xl, x2, • •., Xm+l which has the property that a=xl <

xz < . . < Xm+l= b. The length hj of the jth subinterval, _° xj _< x _< Xj+l, is

called the step size. Thus,

hj= xj+l -- xj forj=l,2,...,m

The system of differential equations (11-1) is then "replaced" by a set

of algebraic equations, say

Gk(yx, • •., Ym+l; Xl, • •., Xm+l) = 0 for k = 1, 2,..., p (11-2)

called difference equations. Their solution is the set of m-4- 1 vectors yl, • •.,

ym+_, which are approximately equal to the values taken on by the solution

y = f(x) of the system (11-1) at the m + 1 points Xl,..., Xm+_. Before discussing

the various methods whereby such difference equations can be constructed,

we shall first consider certain types of errors which can occur when difference

equations are used to obtain numerical solutions.

The discretization or truncation error Et at the ith step is defined to be

the magnitude of the difference between the solution to the differential equa-

tions at the point xi and the solution yi of the difference equations. Thus

E, = If(x,) - y,I

This error depends only on the type of difference equation used and is inde-

pendent of the method by which it is solved.

110It is not necessary to have all hj equal, but it is usually desirable.
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However, there is also an error which is caused by the numerical procedure

itself. Because a computer can accommodate only a limited number of sig-

nificant figures, it cannot store accurately an irrational number or even a

rational number requiring precision beyond the computer's capability. There-

fore, the computers themselves introduce an error which results from the

necessity of rounding off numbers: it is known as the round-off error. The

round-off error at any step in the computations propagates to the next step and

is combined there with the round-off error of that step. The generation of the

round-off error at each step is extremely unpredictable. Precisely for this

reason, analyses of round-off error often treat the error per step as a random

variable (see ref. 43).

Closely related to the question of error is the question of stability, which
must be considered in certain instances before a numerical solution can be

obtained. Various types of instability can arise. If the instability is inherent
in the differential equation itself, it is called an inherent instability. For ex-

ample, consider the initial-value problem

dyl

-_x = y2

dx = 100yl

(11-3)

subject to the initial conditions yl (0) = 1 and y_(0) =--10. The general solution

for equations (11-3)

Yl (X) = Cle -l°x + C2e l°x

y2(x) =- 10Cle -l°x + 10C2e l°x

And the initial conditions are satisfied by taking C1 = 1 and C2 = 0. However,

when a numerical procedure is used, it" will usually be impossible to satisfy
these initial conditions exactly. But a small error in determining the constant

C2 will then allow the second terms in the solutions to eventually grow so large

that they will dominate the first terms, which correspond to the solution being

sought. Situations of this type arise most frequently when the initial-value

problem is being solved as part of an iteration procedure to solve a boundary-
value problem.
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Instabilities can also arise from the difference equations (even when the

differential equations are stable). They are then called induced instabilities.

These instabilities can result in spurious solutions to the difference equations

which do not correspond to solutions of the differential equations. For more
details the reader is referred to reference 43.

11.2 INITIAL-VALUE PROBLEMS

In this section we shall consider certain types of "difference schemes"

which are suitable for obtaining numerical solutions to initial-value problems.

11.2.1 Explicit Methods

11.2.1.1 One-step processes: Taylor series method.-It has been indicated

in chapter 3 that any normal system of ordinary differential equations can

always be written as a first-order normal system, which in vector notation has

the form

Vfl_

----_= G(x, y) (11-4)
dx

We shall now consider some methods, referred to as one-step processes,

for obtaining numerical solutions to this equation on an interval a _ x _ b

subject to the initial conditions y= yi at x= a. For any given partition of

a _ x _< b, say xi, . ., Xm+ 1, we can seek to approximate the solution y= f(x)

of the system (11-4), subject to these initial conditions, by replacing this

equation by the set of algebraic equations (or difference equations)

yj+l=yj-4-C,(xj, yj)hj for j=l, 2, . .., m (11-5)

It can be seen that, starting with the value yl, equation (11-5) can be used to

calculate y_ successively at the points j--2, 3, . ., m+l. We hope that

the vectors yj will provide good approximations to the values f(xj) of the solu-

tion to equation (11-4) at the points xj.

The discretization error which occurs when using a difference equation

to integrate a differential equation across a single step, T(xj, hi), is called the

local truncation error or the truncation error per step. Thus, the truncation

error per step is the error induced by using equation (11-5) to calculate

f(xj + h_) approximately from the value f(xj) =yj or, symbolically,
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r(xj, hj)= l yj+l--f(xj-t- hi) I

Hence, upon substituting in equation (11-5) with y_= f(xj), we get

T(xj, hi)= ] f(xj) -- f(xj+ hi) + G(xj, f(xj) )hjl

But Taylor's theorem shows that 111

df

f(xj4 hj)=f(xj) + (--_x )xjhj4-O(h])

Hence,

JT(x_, hi) = G(x_, f(xj)) - _xx xj

But since, by hypothesis, f(x) satisfies the differential equation (11-4), the

first term vanishes and we obtain

T(xj, hj ) = O (h 2 ) as hj _ 0 (11-6)

More generally, we can attempt to approximate the solution to equation

(11-4) by means of a difference equation of the form

yj+_=yj+_P(xj, yj;hj)hj forj=l,2,...,m (11-7)

where the function _ is to be chosen so that in some sense the solutions to

equation (11-7) provide good approximations to the solutions of equation

(11-4) for sufficiently small step size h_. In order that this be the case, we

certainly must require that

cI_(x, y; h) _ G(x, y) as h--_ 0 (11-8)

If we again let y----f(x) be a solution to equation (11-4), the truncation

error per step T(xj, hj) is

m The concept of order and the symbol O are introduced in chapter 9.
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T(xj, hj) = If(xi) -- f(xi+ hi) + (1)(xi, f(xj); hi)hil

The same argument as was used in obtaining equation (11-6) used to-

gether with condition (11-8) now implies that

T(x_;hi)=o(hj) as h_--) 0 (11-9)

This shows that the truncation error per step goes to zero faster than the

mesh size h_. Other things being equal, it is of course desirable to have the

truncation error per step approach zero at the fastest possible rate as h i'-+ 0.

In order to have some measure of this rate we define the order of a given

difference scheme to be the largest number p such that

T(xj; hi) =O(hy +1) ash_--+0

Equation (11-6) shows that the order of the difference scheme (11-5) is 1.

And, more generally, equation (11-9) shows that the order of any difference

scheme of the type (11-7) which satisfies condition (11-8) is greater than

zero. The numerical method corresponding to the difference scheme (11-5)

is called Euler's method. Although this method is very simple, it is prone to

round-off errors and is therefore infrequently used.

The truncation error per step can be used to obtain a bound on the (cumu-

lative) truncation error for difference equations such as equation (11-7), that

is, difference equations which determine the solution at the point xj+l only

in terms of quantities from the preceding step. Instead of considering the

general system (11-4), we consider, for simplicity, only the single differential

equation

dy = G(x, y) (11-10)
dx

Suppose G(x, y) satisfies the Lipschitz condition with respect to y

[G(x, y) -G(x, {)[ _< M[y- _[
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T(xj, hi)
A=max forj=l,2,...,m

h_

Then it is shown in reference 4 (p. 181) that the truncation error Ej is, at most,

_--- (elXj-X, fM -- 1)
M

that is,

Ej _ -_ (eJXj-X, IM - 1)

Now for any difference scheme of order p, there exist constants Dj inde-

pendent of the mesh size hj such that

And if we put

-- max _j ID max

hj <-DAf

for j= 1, 2 . . .,m

then A _< DCp and the truncation error satisfies the inequality

D¢p

E.j <_ -_- (elXj-z,IM- 1) for j= 1, 2, . .., m

which shows that the (cumulative) truncation error is of order CP when the

difference scheme is of order p.
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In principle, it is easy to derive formulas for numerical integration of

the system of equations (11-4) which are of an arbitrarily high order. This

can be accomplished, for example, by the method of Taylor's series. Instead of

applying this method to the general system of first-order equations (11-4),

we shall again, for simplicity, consider only the single first-order equation

(11-10). There is no difficulty in extending the ideas to the general system

(11-4).

Let y=f(x) be a solution to equation (11-10)and let g(x, y) be any r-times

continuously differentiable function of x and y. Taking the total derivative of

g with respect to x along the curve which is obtained by plotting y=f(x) gives

gl _---
dg_Og 4-Og dy-Og + GOg
dx Ox Oy dx Ox Oy

Applying this formula to the function g_ (x, y) gives

g==-d_ d_ ox -_y- Ux c Ux+ C g =- _ + c g

and, in general, we obtain

_dng_ dg.-i _ Ogn-1

g" -- dx" dx Ox +C 7y _+¢Uy g for n= l, 2, . . ., r

Thus, in the special case when g(x, y)= G(x, y), this equation becomes, in

view of the differential equation (11-10),

d2----Y=Gx + GGu (11-11)
dx z

da---Y-Y= Gxx + 2GGxu + G2Guu + G_Gu + GG_
dx 3

(11-12)
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G (11-13)

d'+'Y_( O +G 0 )rdx _+1 ax _x G

Now suppose that G is p-1 times continuously differentiable and put

_' h" ( 0__+G 0_ )_ G (11-14)• (x,y; h)=- (n+l) v Ox Oy
/t=0

Then, at least in principle, • can be calculated for any integer p simply by

differentiating the given function G. Hence, when y=f(x) is a solution to equa-

tion (11-10), it follows from equation (11-13) that

_1 h n dn+ly• (x,f(x); h) = (n+l)V dxn+ , (11-15)
n=O

Thus, the truncation error per step, which is incurred when the difference

equation

yj+,=yj+_(xj, yj; hi)hi forj=l, 2, . .., m (11-16)

is solved to obtain an approximation to the exact solution, y=f(x), of the

differential equation (11-10), is

T(xj, hi) = I f(xj) -f(xj+ hi) +¢i,(x_,f(xj); hj)h_ I

But inserting equation (11-15) shows that

I P-I h_+' (d"+'Y) IT(xs, hj)= f(xs)--f(xj+hs)+ _ (n+l)V dr.+ '
n=0 " xj

327



DIFFERENTIALEQUATIONS

Hence, upon applying Taylor's theorem we find that

T(x , hi)= o(@+,)

which shows that the formula (11-16) with (I) determined by equation (11-14)
,.

is of order p. The method of Taylor's series is efficient for linear systems or

even for equations where G is a polynomial of low degree in x and y. However,

as can be seen from equations (11-11) and (11-12), the method usually becomes

extremely complex. In order to avoid this complication due to the successive

differentiation and at the same time to preserve the increased accuracy which

is afforded by using the Taylor's series method, a technique introduced by

Runge, Kutta, and Heun known as the Runge-Kutta method can be employed.

In this case, the function (I) in equation (11-7) is taken to be of the form

 (xj,
s=l

(11-17)

where

kl = G(xj, yj) (11-18)

and

k,=G +g,h¢, yj+h¢ k,-1,nkn fors=2, 3, . .., r (11-19)

For any given integer r, the parameters as,/xs, and As, n are to be determined in

such a way that the order p of equation (11-7) is as large as possible.

For simplicity, we shall again restrict our attention to the single first-order

equation

dy_
-_x-- G(x, y) a _ x _ b (11-20)

In this case, equations (11-7) and (11-17) to (11-19) reduce to

y_+_=y_+_(xj, Yi; hi)hi for j=l, 2, . .., m (11-21)
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r

= _= ask, (11-22)

kl= G(xj, y_) (11-23)

k,=G x_+g,hj, y_+h_ X,__,, k for s=2, 3, . .., r (11-24)

And if y=f(x) is a solution to equation (11-20), the expression for T(xj, h_),

the truncation error per step, reduces to

T(xj, h_) = V(x_) --f(x._+ h._) + _(x_, f(x_) ; h_)h¢l (11-25)

Applying Taylor's theorem to the function T(x_, h.i) gives

P 1 pmT(x_, h)
L

But differentiating equation (11-25) m times gives

Hence, the method will be of order p, provided that

o form=l,2, . . .,p

for m=p+ 1
(11-26)

If we substitute equation (11-13) and equations (11-22) to (11-24) into equation

(11-26) and equate to zero the coefficients of all the independent partial

derivatives of G, we will get a set of nonlinear equations for a,,/z,, and X,,n.

For any given value of r, there will be a largest value of p for which these equa-

tions can be solved. For 1 <_ r _< 4, this value of p turns out to be equal to r.

There is a certain arbitrariness in the solutions of these equations for the

constants a,,/x,, and _,.,,. Thus, for r=2, one of these constants can be chosen

arbitrarily; and for r= 3 and r= 4, two of the constants can be chosen arbitrar-

ily. The computations are carried out for the general case in reference 41.
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Here we shall merely illustrate the method by considering

r=3. Then equations (11-22) to (11-24) reduce to

¢P = alkl + o_2k2+ a3k3

the case where

(11-27)

Expanding kl, k2,

only up to h_ give

kl = G(xj, yj) i

k2 = G(xj+ I,_hj, yj + h j)`l, _ kl )

kz--G(xj+ lzahj, yj+ hj)`2, _ kl -4- hj)`2,2 k2)

(11-28)

and ka in a Taylor series about hi= 0 and retaining terms

kl = G (xj, yj)

k2=v + hj (me.x+ )`l,lC.C.,,)

/ 1 2 _ )` 1 2, 1G2Gyy _I
.9ff h_ _-_- _lb2(._xx'g[ - _Jb2 1, 1GGxy-_ y )`1 "4- O ( h 3)

/ x=xj
Y=Yj

k3= G (xj, yj) -l- hj (I.t3Gx-t- )`2,1GGy A- )`2, 2GGy)x=xj
y=yj

>,(11-29)

1 G 1 ()`2, -_ )`2,2)2G2Gyy+by yIz_ xx-_-ft3 ()`2,1-_ )`2,2)GGxy3t- -2 1

+ ),2,2 (/zzGx + )`l, lGVy) GYl_=--_] +O(h])..I
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is the coefficient of (hi) m in the Taylor series expansion of • about hj=O.

Hence, when equations (11-29) are substituted into equation (11-27), the

functions

± {a-c]
m! \ Oh_/nj=o

for m = 0, 1, 2 are simply the coefficients of h_, hi, and hi, respectively, in the

resulting expression. Thus,

(xj, yj; 0) = (am + a2 + a3) G (xj, yj) (11-30)

O(-'_jj)hj=_Ol 2 (I_2Gx-4- _1, 1GGu)_-_-4-0_3 [ft3Gx-4- (_.2,1-_- _.2,2)GGy]_-_ (11-31)

1 I_'-:-:-z ({02_'_1 ft2Gzx+l_2kl, lGGxu + 1 _, 1G2Gyy I

Y=Yj

1 2G 1+c_3 _ _3 _+_3 (X2,1+_2,2) C,G_u+ _ (X2,1+X2,2)2G2Gu_

+ x2.2(_a_+ xl.1GG,)G,]___

On the other hand, equations (11-26) show that

(11-32)
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2 (_jj)hj= ° d2Y

Upon substituting equations (11-11), (11-12), (11-20), and (11-30) to (11-32)

into these relations, we find that the resulting equations are satisfied identically

in xj and y_ only if the constants a,,/xs, and )ts,,, are chosen so that the coeffi-

cients of all the independent derivatives of G vanish. This will occur if, and only

if, the constants satisfy the following algebraic equations:

OL1 + O_2 -3f- O_ 3 ___ 1

1

1 1

+ + = +

1

_2_.1,1C1_2 -'1- ft3 (_-2,1 "4- _2,2) 0_3 = "3

1

_-21,10_2 + (_-2,1 -4- _.2,2)20_3 _---

1 1

ft2_.2,2Cl_ 3 = 6 _1'1_'2'20_3 =

These equations imply that

_-1,1 _ ft2 _-2,1 + _-2,2 : fL3

and there are four independent equations which must be satisfied by the re-

maining six unknown constants. Hence, two of these constants can be chosen

arbitrarily.

The most frequently used Runge-Kutta method is of the fourth order.

The values of the constants as, /xs, and _s,, for the general vector equations
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Standard
Parameters Runge-Kutta Kutta's method

method

(X2

_4

_2
_3
_4

_2,1

k2,2
'_3,1

_3,z

X3,a

1/6

1/3

1/3

1/6

1/2

1/2

1

1/2
0

1/2
0

0
1

]/8

3/8
3/8
1/8

1/3

2/3
1

1/3

--1/3

1

1

--1
1

(11-17) to (11-19) for the fourth-order Runge-Kutta method are listed in table

11-1 for two choices of the arbitrary constants, and because of its importance

the complete formulas for the standard Runge-Kutta method are also listed:

yj+l = yj + h-_ (kl + 2k2 + 2ka + k4)
6

kl : G(xj, yj)

k_=6 x_+_ h_, y_+_ hjk,

k_=6 _j+ _ h_, y_+ _ h_k,

There appears to be only a slight advantage which can be gained by changing

the choice of the arbitrary parameters.
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Although the Runge-Kutta method involves fairly simple formulas, it

has certain disadvantages. Thus, (1) the method is limited to the fourth or

fifth order; (2) if the function G is complicated, the evaluation of the k, for

s = 1, 2, 3, 4 at each mesh point can be quite time consuming; (3) it will calcu-

late a solution even at points of discontinuity without giving any indication that

this has been done; and (4) there is no readily obtainable error analysis.

The lack of any error analysis for the fourth-order Runge-Kutta method

can be partially compensated for by using certain rules of thumb. Thus, for

example (see ref. 41), if the quantity

becomes much larger than a few hundredths at any point xj, the step size

hj should be decreased.

11.2.1.2 Multistep processes: Finite differences.- Up to this point we have

been discussing one-step difference equations, that is equations which deter-

mine the value of the dependent variable at the step xj+, completely in terms of

its value at the preceding step xj. There are other types of difference equations

which can be used, called n-step equations, n2 which utilize the values of the

dependent variable at the first n preceding steps, say xj, xj__, . .., xj_,+_,

to determine its value at the step xj+_.

Before discussing these difference equations it is first convenient to in-

troduce the concept of difference operator. Thus, the difference operators

A, V, and 8 corresponding, respectively, to the forward difference, the backward

difference, and the central difference are defined by

Ay(x) -- y (x-t-h) --y(x)

Vy(x) - y(x) - y (x -- h)

By(x) =- y(x+ h)--y(x -h)

If the function y(x) is defined only on a finite set of points, say x, < x2 < • • •

< Xm+_ with Xj+l --x_ = h forj = 1,2, . ., m, we shall sometimes write

,,2 The associated numerical procedure is referred to as an n-step process.
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Then the notation for the first two difference operators becomes

A yj = yj+ l - Yj Vy_ = yj -- yj-1

These operators arise in approximating the derivative of functions. The

nature of this approximation can be seen from the relations

lim Ay(x) _ lim Vy(x) _ lim By(x) _ dy(x)
,-.0 h ,-.0 h ,-.0 2h dx

Applying these operators twice in succession gives the second differences

A2y(x) = A [Ay(x) ] = A [y (x -4-h) --y(x) ] = y (x -4-2h ) - 2y (x -4-h) -4- y(x)

VZy(x) =y(x)-2y (x--h) +h (x--2h)

_2y(x) =y (x+ h ) -- 2y (x) + y (x--h)

These formulas can be used to provide approximations to the second deriva-
tive since

dZy(x)- lim AZy(x) - lim V2Y(X) - lim $2y(x)
dx 2 h-.o h 2 ,-.0 h 2 _0 h 2

There are various manipulations that can be performed with these and other

difference operators which are sometimes useful for obtaining finite difference

equations from differential equations. A fairly detailed discussion of this is

given in Hildebrand (ref. 44).

Now consider the general nth-order differential equation in normal form

ndnY=G dy dn-'y]
dx" ' y' --_x' " " "' dx"-l / a <_ x <_ b (11-33)
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Suppose that the interval a _< x _< b has a partition xl, x2,. ., Xm+l for which

all the subintervals xj <_ x <_ xj+l have the same length h. Upon replacing

each derivative (dky)/(dx k) for k= 1, 2, . ., n in equation (11-33) by its

forward difference approximation h -k Akyj, where yj is the approximation to

y [a+ (j- 1) hJ =y (xj), we obtain the difference equation

( 1 )A"yj= h,G xj, yj, --_ Ayj, . ., h,_i A,-_yj (11-34)

However, since Akyj is a linear combination of yj, y)+,, . .., Yj+k, this equation

is essentially of the form

yj+m_---6 (J, Yj, Yj+I, . • -, yj+m-1; h)

which is clearly an n-step difference equation.

In fact, even first-order normal differential equations can lead to n-step

difference equations. Thus, consider the differential equation

= C(x, y)

and approximate the derivative by the central difference (yj+_-yj-1)12h to

obtain the difference equation

yj+l= yj-l + 2hG(xj, Yj)

which is clearly a two-step equation.

Notice that, in order to start the solution of an n-step method, we must

have a prior knowledge of the values of y_, yz, y3, • •., y,, that is, the values

(or approximate values) of the solution at the first n mesh points. A one-step

method requires only a knowledge of the initial value y_. Hence, when n > 1

it is in many instances necessary to introduce some auxiliary method for deter-

mining these values. The one-step methods are, therefore, said to be self-

starting. In a one-step method, the mesh size hj- xj+_-xj can be varied at

each step. With a multistep method, it must usually remain fixed.
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]].2.2 Implicit Methods: Predictor-Corrector

In the methods discussed so far, the value of the dependent variable

yj+l at the step x_+l is determined explicitly in terms of its values at one or

more preceding steps. We can, therefore, calculate the values of the dependent

variable recursively. Hence, such methods are called explicit methods. There

are other methods, however, in which the formulas for calculating y_+l from

the values of the dependent variable at the preceding steps are not solved

explicitly for y_+l but determine this variable only implicitly. Such methods

are, therefore, called implicit methods.

In order to see how difference equations of this type arise, let

a=xl <xz < . . . <Xm+l=b

be a partition of the interval a _< x <_ b; suppose that each subinterval x¢ _< x _<

f:x_+l has the same length, say h; and consider the integral f(x)dx. Recall

that this integral can be evaluated numerieally in an approximate fashion by

using either the trapezoidal rule

bf(x)dx _ = _ [f(x_+_) + f(x_) ]h

or by using Simpson's rule

f_ m-1 1f(x)dx _- _ -_ [f(xj+2) + 4f(xj+l) + f(xj) ]h
j=l

Now, consider the first-order differential equation

dy _ G(x, y) (11-35)
dx

Integrating both sides of this equation first between x_ and xj+l and then between

x_ and xj+2 gives, respectively,
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yJ+I=yJ + I'lxj+l G(x, y(x) )dx
J xj

(11-36)

and

f Xj+2yj+z= yj+ G(x, y(x) )dx
J xj

(11-37)

Upon using the trapezoidal rule for evaluating the integral in equation (11-36)

and Simpson's rule for evaluating the integral in equation (11-37), we get the

following finite difference equations for approximating the solution to equation

(11-35):

yj+l=yj-I t- [G(xj+l y_+,) +G(xj, yj)] h, (11-38)

and

h

yj+2=yj + [G(xj+2, yj+2) + 4G(x)+l, yj+l) +G(xj, yj) ] -_ (11-39)

Notice that in the first of these equations, yj+l appears not only explicitly

but is involved implicitly through G on the right side. In general, it will not be

possible to solve this equation to obtain an explicit formula for yj+l. Similar

remarks, of course, apply to the second equation. If, instead of treating the

single first-order normal equation (11-35), we consider the general normal

system

dy = G(x, y)
dx

the same arguments would lead to the difference equations

h

y/+l = y/-4 - [G(xj+l, yj+l)A-G(xj, y/)]

(11-40)

(11-41)
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h

yj+2 = yj+ [G(xj+2, yj+2) + 4G(xj+l, yj+,) + G(x_, yj) ] (11-42)

Notice that, in equation (11-41), yj+l is determined completely in terms of

its value at the preceding step; whereas, in equation (11-42), yj+2 is deter-

mined in terms of the values of the dependent variable at the preceding two

steps. Since these formulas cannot usually be solved explicitly for the de-

pendent variable, it is usually necessary to resort to an iteration process at

each step to find this variable. Thus, let

U (yj+l) = yj+ [G (-_j+l, yj+l) +G (xj, yj) ]h

Then equation (11-41) can be written as

y_+, = U (yj+,) (11-43)

Suppose that by some means a fairly good guess at the solution yj+l of equation

(11-41) can be made, say _°) 1. Substituting this into equation (11-43) gives

a better approximation _, to the solution, given by _1 = U (_1).
Proceeding in this manner, we obtain the sequence of approximations

Y_jI+)I=U (Y_j0+)I), y_j2)I=U (y_j1)l), y_j3_I_)I=U (y_j2)l), . .

which we hope will converge fairly rapidly to the solution of equation (11-41).

A good choice of the initial approximation _o] can be obtained by using Euler's
formula, equation (11-5), to obtain

= yj+ 6 h (11-44)

In practice, instead of solving equation (11-41) accurately for yj+t by

performing many iterations, we can obtain the same accuracy with much less

work by taking a finer mesh size h and performing only one or two iterations.

If only one iteration is performed, the method is called the improved Euler

method. In this case, we first compute the vector Y_+I, called the predictor,
from the formula
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Yj+_= yj+G (xj, yj) h (11-45)

called the predictor formula, and then substitute it into the formula

h

yj+, = yj+ [G (xj+,, Yj+,) +G (xj, y_) ] -_ (11-45)

called the corrector formula, to determine yj+l. Thus, in effect, yj+l is cal-

culated from y_ in two steps instead of one. Of course, we can apply the same

procedure to equation (11-42). This leads to Milne's method.

These two methods are examples of the predictor-corrector methods.

Other predictor-corrector methods differ from these only with respect to the

polynomial interpolation formulas from which the predictor and corrector

formulas are derived. A commonly used predictor formula is the Adams-

Bashforth formula (see ref. 45)

yj+l = yj+ h (55G_ - 59Gj-1 + 37Gj-z- 9Gj-3)

where we have put Gj = G(xj, yj). This formula is most frequently used in

conjunction with the Adams-Moulton corrector formula (see ref. 45)

yj+l= y_+ h [9G(xj+,, Yj+,) + 19Gj-5Gj_I + Gj-2]

These formulas have a higher order of accuracy than the Euler's formulas. How-

ever, they are not self-starting. Also, unlike the Runge-Kutta method they

cannot be easily used alone with a variable mesh size. These difficulties are

frequently alleviated in practice by using the Runge-Kutta method to obtain

the starting values and also to compute the solution for the first few mesh

points after the step size has been changed. However, the predictor-corrector

methods can, in the case of complicated equations, result in a considerable

savings in computer time over the Runge-Kutta method. In addition, it is

usually possible with predictor-corrector methods to monitor the error as the

calculation proceeds.

Another difficulty with the predictor-corrector methods is that in some

cases, they are subject to certain types of instabilities which do not occur

when the Runge-Kutta method is used. This instability manifests itself first by
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resulting in an error which is larger than expected; and when one attempts to

reduce this error by decreasing the step size, the error actually increases. A

more detailed but elementary discussion of this instability is given in reference

45.

11.3 BOUNDARY-VALUE PROBLEMS

11.3.1 Linear Equations

11.3.1.1 Use of superposition.--The methods discussed previously have

all been methods for solving initial-value problems. However, in the case of

linear equations, these methods can be used in conjunction with the super-

position principle to obtain solutions to boundary-value problems. Thus, in

order to solve a boundary-value problem for a linear differential equation, we

need only solve numerically the same number of initial-value problems as

the order of the differential equation, provided these problems are chosen in

such a way that their solutions are linearly independent of one another. It is

easily seen from section 1.6 that this can always be done by choosing the

initial conditions of these problems so that they have a nonzero Wronskian

determinant. Then any boundary-value problem can be solved by forming a

linear combination of these solutions with the constants adjusted numerically

to satisfy the imposed boundary conditions. This is a particular example of how

some a priori knowledge of the properties of the solutions of the equations to

be solved can be utilized to simplify the numerical procedure for obtaining

these solutions.

11.3.1.2 Finite differences.--Another method for solving linear boundary-

value problems is the method of finite differences. In order to illustrate this

method, let us consider the second-order linear equation

dZY + p(x) dy
dx---_ -_x ÷ q(x)Y= r(x) a _< x <_ b (11-47)

subject to the boundary conditions

y(a) = A

y(b)=B
(11-48)

341



DIFFERENTIAL EQUATIONS

Let a=x0<xi<... <Xm+l=b be a partition of a_<x_<b with equal

mesh size h.

Upon approximating the derivatives by appropriate central differences,

we obtain the following difference-equation approximation to equation (11-47)

Yj+l--2yjA-Yj-1 yj+l--Yj-1
-4- pj A:-.yjqj= rj forj=l,2,...,m2h 2h

where we have put pj = p(xj), q_ =- q(xj), and rj - r(xj). This can be written

as

h

(1- 5 forj=l,2,...,m

Upon using the boundary conditions (11-48) to replace yo by A and ym+l by

B, we obtain the following set of m equations in the m unknowns yl, y2, • •.,

ym:

(h2q_--2) yl+ l+_pl y2=h2r_+ _pl--1 A

(h) (h)1---_p2 yl+(h2ql--2)y2+ l+_-p2 y3=h2r2

1 h-5 ) (h )pro-1 ym-2-k- (hUqm-l--2)ym,1 -k- 1-4--_pm-1 ym=h2rm-1

ym__+ (h2q_--2)ym=h2rm-- l+_pm B

This equation can be written in matrix form as

My= c

where y is the vector y= (yl, y2, • •., ym), n is a matrix of the form

(11-49)
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m
m

/31 Yl 0 0 .... 0 0 0 0

a2 B2 T2 0 .... 0 0 0 0

0 a3 B3 3'3 .... 0 0 0 0

0 0 0 0 .... 0 O_m-1 /_rn- 1 3"m-1

0 0 0 0 .... 0 0 Otto _m_..2

and e is a vector. The entries in M and c are all known since p, q, and r are

known functions. For obvious reasons, the matrix M is said to be tridiagonal.

Tridiagonal matrices can be numerically inverted easily and quickly; and,

therefore, equation (11-49) can readily be solved by inverting M to find the

solution vector y. A particularly convenient technique is known as the line

inversion method. In setting up finite difference problems it is not always

possible to obtain tridiagonal or even n-diagonal matrices. However, whenever

possible, the difference equations should be set up to obtain n-diagonal matrices

since they can usually be inverted more easily than other types of matrices.

In addition, when the system is programed for a digital computer, it is not

necessary to define all m 2 locations of the coefficient matrix M; in the case of

a tridiagonal matrix, for example, only 3m locations need be allocated to M

while performing the inversion. In any case the matrices which arise in the

finite difference methods may usually be inverted by either implicit or explicit

means. For a discussion of the various methods for accomplishing this, the

reader is referred to references 46 and 47. It sometimes happens, however,

that it is not possible to invert these matrices; it is then necessary to usean

iterative process to solve the matrix equation (see ref. 47).

11.3.2 Nonlinear Equations

11.3.2.1 Shooting methods.--Boundary-value problems for nonlinear

equations can be solved by using "shooting methods." To use these methods

the problem is first transformed to an initial-value problem by guessing enough

additional initial conditions at one boundary to allow the integration to proceed

across the interval to the other boundary. In the initial trial the specified

boundary conditions at the second boundary are unlikely to be met. But, by

adjusting the additional initial conditions imposed at the first boundary, it is
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possible to come closer to satisfying the prescribed boundary conditions by

carrying through a number of iterations.

The required adjustments to the additional initial conditions can be

made in a number of different ways. Perhaps the most common of these is

linear interpolation. In order to illustrate the ideas involved, consider a two-

point boundary-value problem for a second-order system on the interval

a _< x _< b in which the boundary conditions y(a)=A and y(b)=B are

specified. And suppose that the initial slope y'(a) is to be adjusted until the

second boundary condition is satisfied. When two values of the initial slope

y_ (a) and y_ (a) have been found which lead to the two boundary values yl (b)

and y2(b), respectively, such that

y_(b) <<-B <<-y2(b)

the next trial value of y' (a) is determined by linear interpolation by using the

prescription

y'(a)-y_(a)_ B-y,(b)

y_(a) -y_(a) y2(b) -y_(b)

If this new value of y' (a) leads to a value y(b) which is either smaller or larger

than B, it can be used together with either y2(b) or y_(b), respectively, to

repeat the process. The process can be continued until the second boundary

condition is satisfied to within the desired accuracy.

One difficulty with shooting methods which sometimes occurs is that the

differential equation is so unstable that it "blows up" before the initial-value

problem can be completely integrated. In such cases the process of quasi-

linearization can be used.

11.3.2.2 Quasi-linearization.--Nonlinear boundary-value problems can

also be solved by reducing them to linear problems by a process of quasi-

linearization. This process consists of replacing the original equation by a

sequence of linear equations in such a way that the sequence of solutions to

these equations converges to the solution of the original equation. Thus,

consider the first-order normal equation

dYD

-_x -- G(x, y) (11-50)
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If _ is close to y, we might anticipate from Taylor's theorem that

OG

G(x, y) _ G(x, _) +--ff-fy (x, y) (y-y)

We, therefore, replace equation (11-50) by the sequence

dy (n+ l) OG

dx - G(x, yOO ) + -ff-fy(x, yOO ) [yO_+,)-yOO ] forn=0, 1,2,...

(11-51)

of linear equations for y_"+_). To use these equations we, first, choose a reason-

able guess for y_0), calculate y_a), insert it in the right side, and calculate y_2).

Proceeding in this manner, we obtain a sequence of solutions y_") which we

hope will converge to the solution y of the original problem. Since each equa-.

tion (11-51) is linear, it can be handled by the methods described previously.

These ideas are easily generalized to the first-order normal system

and, therefore, to any normal system of differential equations. The basic

reference on the quasi-linearization process is Bellman and Kalaba (ref. 48),

in which are discussed various conditions which can be imposed on the func-

tions G to ensure that the iterations converge.

Although all the most commonly used methods are described in this

chapter, it is impossible in a single chapter to touch upon all the available

techniques. For a more complete treatment of the subject, the reader is referred
to the references cited.

345



REFERENCES

1. STAKGOLD, IVAR: Boundary Value Problems of Mathematical Physics.

Vol. I. Macmillan Co., 1967.

2. FRIEDMAN, AVNER" Generalized Functions and Partial Differential Equa-

tions. Prentice-Hall, Inc., 1963.

3. INCE, EDWARD L." Ordinary Differential Equations. Dover Publications,
1953.

4. BIRKHOFF, GARRETT; and ROTA, GIAN-CARLO" Ordinary Differential Equa-

tions. Ginn and Co., 1962.

5. GREENSPAN, DONALD: Theory and Solution of Ordinary Differential

Equations. Macmillan Co., 1960.

6. KAPLAN, WILFRED: Advanced Calculus. Addison-Wesley Publ. Co., Inc.,
1952.

7. KAPLAN, WILFRED: Ordinary Differential Equations. Addison-Wesley
Publ. Co., Inc., 1958.

8. GOLDSTEIN, MARVIN E., and ROSENBAUM, BURT M.: Introduction to

Abstract Analysis. NASA SP-203, 1969.

9. MORLEY, F. V.: A Curve of Pursuit. Am. Math. Monthly, vol. 28, 1921,
pp. 55-93.

10. DAVIS, HAROLD T.: Introduction to Nonlinear Differential and Integral

Equations. Dover Publications, 1960.

11. PAINLEVI_, P.: On Differential Equations of the Second and of Higher

Order, the General Integral of Which is Uniform. Acta Math., vol. 25,
1902, pp. 1-85.

12. HERBST, ROBERT T.: The Equivalence of Linear and Nonlinear Differ-

ential Equations. Proc. Am. Math. Soc., vol. 7, 1956, pp. 95-97.
13. GERGEN, J. J.; and DRESSEL, F. G." Second Order Linear and Nonlinear

Differential Equations. Proc. Am. Math. Soc., vol. 16, 1965, pp. 767-773.

14. PINNEY, EDMUND: The Nonlinear Differential Equation y"+p(x)y+ cy -3

= 0. Proc. Am. Math. Soc., vol. 1, 1950, p. 681.

15. RAINVILLE, EARL D.: Intermediate Differential Equations. Second ed.,
Macmillan Co., 1964.

347

488-942 0 - 73 - 23



DIFFERENTIAL EQUATIONS

16. MURPHY, GEORGE M.: Ordinary Differential Equations and Their Solu-

tions. D. Van Nostrand Co., Inc., 1960.

17. KAMKE, E.: Differentialgleichungen, L6sungsmethoden und LiSsungen I

Gew/Shnliche Differentialgleichungen. Akademische Verlagsgesell-

schaft Decker & Erler kom.-ges., Leipzig, 1943.

18. CHURCHILL, RUEL V.: Complex Variables and Applications. Second ed.,

McGraw-Hill Book Co., Inc., 1960.

19. AHLFORS, EARS V.: Complex Analysis. McGraw-Hill Book Co., Inc., 1953.

20. CARRIER, GEORGE F.; KROOK, MAX; and PEARSON, CARL E.: Functions of

a Complex Variable. McGraw-Hill Book Co., Inc., 1966.

21. NEHARI, ZEEV: Conformal Mapping. McGraw-Hill Book Co., Inc., 1962.

22. MORETTI, GINO: Functions of a Complex Variable. Prentice-Hall, Inc.,

1964.

23. RAINVILLE, EARL D.: Infinite Series. Macmillan Co., 1967.

24. POOLE, E. G. C.: Introduction to the Theory of Linear Differential Equa-

tions. Dover Publications, 1936.

25. WHITTAKER, EDMUND T.; and WATSON, GEORGE N.: A Course in Modern

Analysis. Fourth ed., Cambridge Univ. Press, 1927.

26. ERDI_LYI, A.; MAGNUS, W.; OBERHETTINGER, F.; and TRICOMI, F.: Higher

Transcendental Functions. Vol. 2, McGraw-Hill Book Co., Inc., 1953.

27. RAINVILLE, EARL D.: Special Functions. Macmillan Co., 1960.

28. BUCHHOLZ, HERBERT: The Confluent Hypergeometric Function with Spe-

cial Emphasis on Its Applications. Springer-Verlag, 1969.

29. WATSON, GEORGE N.: A Treatise on the Theory of Bessel Functions.

Cambridge Univ. Press, 1922.

30. MCEACI-ILAN, NORMAN W.: Theory and Application of Mathieu Functions.

Dover Publications, 1954.

31. TITCHMARSH, EDWARD C.: The Theory of Functions. Second ed., Oxford

Univ. Press, 1939.

32. ERDELYI, A.: Asymptotic Expansions. Dover Publications, 1956.

33. LANCER, RUDOLPH E.: On the Asymptotic Solutions of Ordinary Differ-
ential Equations, with an Application to the Bessel Functions of Large

Order. Trans. Am. Math. Soc., vol. 33, Jan. 1931, pp. 23-64.

34. LANCER, RUDOLPH E.: On the Asymptotic Solutions of Differential Equa-

tions, with an Application to the Bessel Functions of Large Complex

Order. Trans. Am. Math. Soc., vol. 34, July 1932, pp. 447-480.

348



REFERENCES

35. LANGER, R. E.: The Asymptotic Solution of Ordinary Linear Differential

Equations of the Second Order, with Special Reference to the Stokes

Phenomenon. Bull. Am. Math. Soc., vol. 40, 1934, pp. 545-582.

36. FRIEDRICHS, K. O.: Special Topics in Fluid Mechanics. New York Univ.

Press, 1953, p. 126. Special Topics in Analysis. New York Univ. Press,

1954, p. 184.

37. LIGHTHILL, M. J.: A Technique for Rendering Approximate Solutions to

Physical Problems Uniformly Valid. Phil. Mag., Ser. 7, vol. 40, no. 311,

Dec. 1949, pp. 1179-1201.

38. KEVORKIAN, J.: The Two Variable Expansion Procedure for the Approxi-

mate Solution of Certain Non-Linear Differential Equations. Rep.

SM-42620, Douglas Aircraft Co., Inc. (AD-437675), Dec. 3, 1962.

39. KOPAL, ZDENI_K: Numerical Analysis. John Wiley & Sons, Inc., 1955.

40. MILNE, WILLIAM E.: Numerical Solution of Differential Equations. John

Wiley & Sons, Inc., 1953.

41. COLLATZ, L.: The Numerical Treatment of Differential Equations. Springer-

Verlag, 1960.

42. Fox, L.: The Numerical Solution of Two-Point Boundary Problems in

Ordinary Differential Equations. Clarendon Press, Oxford, 1957.

43. Fox, LESLIE; and MAYERS, D. F.: Computing Methods for Scientists and

Engineers. Clarendon Press, Oxford, 1968.

44. HILDEBRAND, F. B.: Introduction to Numerical Analysis. McGraw-Hill

Book Co., Inc., 1956.

45. CONTE, S. D. : Elementary Numerical Analysis-An Algorithmic Approach.

McGraw-Hill Book Co., Inc., 1965.

46. RALSTON, ANTHONY; and WILF, HERBERT S., eds.: Mathematical Methods

for Digital Computers. Vol. I. John Wiley & Sons, Inc., 1960.

47. VARGA, RICHARD S.: Matrix herative Analysis. Prentice-Hall, Inc., 1962.

48. BELLMAN, R.; and KALABA, R.: Quasilinearization and Nonlinear Boundary

Valve Problems. American Elsevier, 1965.

349



INDEX

Absolute value of complex number, 113

Adams' method, 319

Adams-Bashforth formula, 340

Adams-Moulton formula, 340

Adjoint equation, 99,105

Affine group, 93

Airy's equation, 288

Analytic continuation

along a simple curve, 134

definition, 133

in neighborhood of singular points, 137

of multiple-valued functions, 139

of solution of differential equation, 160

specific method, 135

Analytic functions of a complex variable, 114, 116

Analytic functions of n complex variables, 146

Associated homogeneous equation, 24

Associated Legendre equation, 229

Associated Legendre functions, 231

Asymptotic expansion, 262,265

nonuniformly valid, 287

of a solution, 267,285

Asymptotic power series, 265

Asymptotic sequence of functions, 264

Asymptotic series, defined, 263, 265

Autonomous systems of differential equations, 59

Bernoulli's equation, 45

Bessel's equation, 241,277, 288

Bessel function, 278

of first kind, 242

of second kind, 244

modified, of first and third kind, 246

Beta function, 156

Boundary conditions, 17, 319, 341

Branch cut, 144

Branch of analytic function, 145

Branch point, 141

Canonical basis of solutions, 168

Cauchy estimates, 123

Cauchy product of two series, 126

Cauchy-Riemann equations, 114

Characteristic curves of partial differential equation, 68

Characteristic equation

of partial differential equation, 68

of two algebraic equations, 162

Characteristic exponents, 177

difference an integer, 195

difference not an integer, 188

Circle of convergence, 122

Complementary function, 32

Complete analytic function, 139

Complex integration, 129

Complex plane, 111, 116

Complex variables, 111

Confluence of singularities in Riemann-Papperitz

equation, 233

Confluent hypergeometric functions, 235

Conformal mapping, 116

Critical points of first-order autonomous systems, 64

Degree of differential equation, 8

Derivatives

of functions of complex variables, 113

of vectors, defined, 58

Difference

forward, backward, central, 334

Difference equations, 320

one-step, 322

n-step, 334, 336

Differential equation

containing a parameter, 281

definition, 7

exact, second order, 93

equivalent to linear equation, 101

fundamental theorem, 13, 148, 151

homogeneous, 8

linear, 8

normal, 13

of first degree, 35

of first order, 35

partial, 68, 69
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Differential equation in complex plane, 148

analytic continuation of solution, 150

Taylor series expansion of solution, 149

Discretization error (see truncation error)

Divergent series, as solution of differential equations, 256

Domain, 2, 114, 121,123

Elliptic equation, 79

Elliptic functions, 79

Entire function, 121

Equation of Painlev6, 102

Equation splitting, 109

Equation with dependent variable missing, 74

Equilibrium solution of first-orc[er autonomous system, 64

Equivalent equations under change of variable (second

order), 105

Essential singularity, 120

ofp(z) and q(z), 252

Euler's constant, 245

equation, 83

equation, homogeneous, 107

formula, 112

integral of second kind, 154

method, 319, 324

method improved, 339

Factorial function, generalized, 155

Finite-difference method, 341

Finite points of the complex plane, 117, 121

First integral, 12

Fuchs theorem, 149

Fuchsian equation, 201

with two singular points, 202

with three singular points, 203

Fuchsian invariant for equation of order two, 206

Function

implicit, 5

single valued, 3

Functionally independent integrals of a system, 55

Fundamental set of equations, 151, 159, 168

Fundamental solutions, 33

Fundamental theorem

of analytic continuation, 132, 141

of first-order normal system, 50

Gamma function, 154

Gegenbauer polynomial, 227

Geometric series, 125

Group theory method for reducing order of equation, 91

Hankel functions of first and second kind, 246

Hermite polynomial, 249

Holomorphic functions of a complex variable, 114

Homogeneous equation

first order, 43

of order n, 8

second order, 79

Homogeneous Euler equation, 107

Homogeneous function of degree k, 45

Homogeneous solution, 24

Hypergeometric equation 210

derivative of, 223

integral form, 222

Kummer's 24 solutions, 220

logarithmic solution, 225

of Gauss, 212

Whittaker's form, 238

Hypergeometric functions, 215

generalized, 224

Implicit function theorem, 5

Indicial equation, 177, 199

of Fuchsian equation with two singular points, 203

of Fuchsian equation with three singular points, 205

Infinitesimal operator, 87

Infinitesimal transformations, 87

Initial conditions, 13,319

Inner and outer expansions of solution near a transition

point, 297

Instability

in predictor-corrector methods, 340

induced, 322

inherent, 321

Integral

first, 95

of differential equations, 12

of system of equations, 51

Integral curves of first-order autonomous systems, 64

Integrating factor

of first-order equation, 41

of second-order equation, 97

Interchange of dependent and independent variables, 107

Invariant of second-order equation, 105

Irregular singular points, 173, 251

Isobaric equation, 43, 81, 93

Isobaric function, 82

Isolated singular points

of analytic functions, 119

of second-order linear equation, 159

Jacobi differential equation, 225

Jacobi polynomial, 226

Jacobian determinant, 52

Kummer's confluent hypergeometric equation, 235

first formula, 240
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second formula, 243

24 solutions to hypergeometric equation, 220

Laguerre polynomials, 240

Lam6 equation, 249

Laurent series, 128

Legendre

equation, 228

function of first kind, 228

function of second kind, 228

polyndmial, 228

transform, 108

Linear equations

differential, 24

first order, 35

Linear fractional transformation, 117,209

Linear homogeneous equation, 106

Linear independence, 25

Linear second-order equations, 74

Linearly independent solutions in complex plane, 151

Liouville's theorem, 121

Logarithmic function of complex variable, 145

Magnification group, 88

Matched asymptotic expansions, 295

Mathieu equation, 249

Meromorphic function, 121

Method of variation of parameters, 84

Milne's method, 340

Modulus of complex number, 113

Monodromy theorem, 141 (footnote)

Multiple-time methods, 311

Multiple-valued function, 139

n-dimensional vectors, 57

Neighborhood, 2

Nonuniform-distortion group, 93

Normal differential equation, 12

Normal form of second-order equation, 105

Normal solutions of irregular singular points, 269

Normal systems of equations, 49

One-dimensional equation, 43

One-step processes, 322

Order

defined, 263

of a differential equation, 8

symbols, 263

Ordinary point, 159

Parabolic cylinder functions, 248

Parameter, expansions of solutions in, 282

Partition of an interval, 320

p-discriminant, 23

Pockhammer-Barnes function, 236

INDEX

Point at infinity, 117, 173

Polar representation of complex number, 112

Pole of an analytic function, 119

Polynomial, 121

Power series in complex variable, 122

Predictor-corrector methods, 337

Primitive, 9

Principal branch of the logarithm, 145

Principle of permanence of functional relations, 146

Quasi-linear partial differential equation, 69

Quasi-linearization of nonlinear equations, 344

Radius of convergence, 122, 160

Rank of an equation, 269

Rational function, 121

Recurrence relation, 177, 188, 190, 196

Regular singular point, 172

Regular solutions, 170

Removable singularity, 119

Riccati equation, 46, 80

Riemann-Papperitz equation, 205

Riemann P-symbol, 206

Rodrigues formula for Jacobi polynomials, 226

Round-off error, 321

Runge-Kutta method, 328,332

Second-order equations, 73

with dependent variable missing, 74

with independent variable missing, 77

Secular terms of a solution, 307

Separable equation (first order), 43

Shooting methods, 343

Simple pole, 119

Simply connected domain, 38

Single-parameter Lie group, 86

Singular locus, 23

Singular point, 25

of a differential equation, 35, 159

Singular solutions, 19, 21

Singularity of solutions, 169

Solution

curves, 64

of differential equation, 8

of equation, 5

general, 10

particular, 8

singular, 11, 19
Solution of second-order linear equation

at ordinary point, 174

at regular singular point, 174

by change of variables, 104

near irregular singular point, 251

near isolated singular point, 160

Stokes phenomenon, 266, 277
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Strained coordinates, method of, 306

Subnormal solutions of.irregular singular points, 274

Superposition principle, 24

Systems of equations, normal, 49

Tables of differential equations and solutions, 110

Taylor series, 123

Taylor series method, 322

Transformation to equation with constant coefficients, 106

Transition point, 287

Translation g_oup, 92

Truncation error, 320

local, 322

Tschebychev equation, 228

Tschebychev polynomial, 228

Uhraspherical equation, 227

Ultraspherical polynomial, 227 (footnote)

Vector functions, 58

Weber equation, 248

Weber function, 248

Whittaker's confluent hypergeometric equation, 238

Wronskian, 103, 152, 170
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